Add comments and refactor code for 2024 day 12 in a more functional style

This commit is contained in:
Chris Alge 2024-11-20 14:55:00 +01:00
parent fe3134d10e
commit 02398d2541

View file

@ -51,23 +51,35 @@ struct Catapult {
} }
impl Catapult { impl Catapult {
/// If this catapult is able to hit the `target` coordinates, this returns `Some(p)`, where `p`
/// is the `Phase`, in which it will be hit. If it cannot be hit, `None` is returned.
fn can_hit(&self, target: Coordinates) -> Option<Phase> { fn can_hit(&self, target: Coordinates) -> Option<Phase> {
if target.x <= self.coordinates.x { if target.x <= self.coordinates.x {
// we only ever shoot to the right
None None
} else if target.y <= self.coordinates.y { } else if target.y <= self.coordinates.y {
// Special case to avoid underflows and division by zero below.
// If the target is on equal or lower height than the catapult, we can only ever hit it
// in descend phase (or not at all), so we don't need to check the other cases
if (target.x + target.y - (self.coordinates.x + self.coordinates.y)) % 3 == 0 { if (target.x + target.y - (self.coordinates.x + self.coordinates.y)) % 3 == 0 {
Some(Phase::Descend) Some(Phase::Descend)
} else { } else {
None None
} }
} else { } else {
match (target.x - self.coordinates.x) / (target.y - self.coordinates.y) { match (target.x - self.coordinates.x).div_ceil(target.y - self.coordinates.y) {
0 => if target.y - self.coordinates.y == target.x - self.coordinates.x { // The match formula determines in which phase (if any) we could hit the target:
// * (>0..1): The y difference is greater than the x difference. We can't possibly
// hit. (Exact 0 is already being handled by the special casing above).
// * 1 exactly: The x and y differences are equal. We definately hit in ascend phase.
// * (>1..=2): This marks the glide phase. We definately hit there.
// * (>2..): Descend phase. We hit if the sums of x and y differ by a multiple of 3.
1 => if target.y - self.coordinates.y == target.x - self.coordinates.x {
Some(Phase::Ascend) Some(Phase::Ascend)
} else { } else {
None None
}, },
1 => Some(Phase::Glide), 2 => Some(Phase::Glide),
_ => if (target.x + target.y - (self.coordinates.x + self.coordinates.y)) % 3 == 0 { _ => if (target.x + target.y - (self.coordinates.x + self.coordinates.y)) % 3 == 0 {
Some(Phase::Descend) Some(Phase::Descend)
} else { } else {
@ -77,6 +89,10 @@ impl Catapult {
} }
} }
/// Returns the (minimal) shooting power required to hit the `target`, or `None` if it cannot be
/// hit. If the target is being hit in the ascend phase, any power greater than or equal to the
/// returned value will hit the target. In the other two phases, only this exact value will
/// hit.
fn power_to_hit(&self, target: Coordinates) -> Option<usize> { fn power_to_hit(&self, target: Coordinates) -> Option<usize> {
match self.can_hit(target) { match self.can_hit(target) {
Some(Phase::Ascend) | Some(Phase::Glide) => Some(target.y - self.coordinates.y), Some(Phase::Ascend) | Some(Phase::Glide) => Some(target.y - self.coordinates.y),
@ -98,9 +114,12 @@ fn try_parse(input: &str) -> Result<(Vec<Catapult>, Vec<Coordinates>), ParseErro
match c { match c {
'.' | '=' => (), '.' | '=' => (),
'T' => targets.push(Coordinates { x, y }), 'T' => targets.push(Coordinates { x, y }),
'H' => targets.append(&mut vec![Coordinates { x, y }; 2]), 'H' => targets.append(&mut vec![Coordinates { x, y }; 2]), // same as 2 targets in the same spot
c if ['A', 'B', 'C'].contains(&c) => catapults.push( c if ['A', 'B', 'C'].contains(&c) =>
Catapult { coordinates: Coordinates { x, y }, segment_number: c as usize - b'@' as usize }), catapults.push( Catapult {
coordinates: Coordinates { x, y },
segment_number: c as usize - b'@' as usize,
}),
e => return Err(ParseError::ParseCharError(e)), e => return Err(ParseError::ParseCharError(e)),
} }
} }
@ -112,11 +131,30 @@ pub fn run(input: &str, part: usize) -> Result<usize, ParseError> {
match part { match part {
1 | 2 => { 1 | 2 => {
let (catapults, targets) = try_parse(input)?; let (catapults, targets) = try_parse(input)?;
let score = (0..targets.len()) // Despite the challenge suggesting it, the order in which we attack the targets
.map(|shot| { // doesn't actually matter. Since all targets are being hit in the descend phase, and
let target = targets[shot]; // during that phase, any point can be reached by exactly one of our catapults (see
let catapult = catapults.iter().find(|c| c.can_hit(target).is_some()).unwrap(); // sketch below) with exactly one value of shooting power, the ranking of each target
catapult.segment_number * catapult.power_to_hit(target).unwrap() // can only ever have one value. Hence, we only need to make sure to visit every target
// exactly once.
//
// The following sketch shows, which points are reachable from which catapult in
// descend phase with shooting powers 1..=3 (lowercase letters indicate the catapults,
// uppercase the reachable points; dots are not reachable in descend phase):
//
// ........C
// ......C.BC
// .c..C.BCABC
// .b..BCABCABC
// .a..ABCABCABC
// =============
let score = targets
.iter()
.map(|&target| {
catapults
.iter()
.find_map(|c| c.power_to_hit(target).map(|p| p * c.segment_number))
.expect("target unreachable")
}).sum(); }).sum();
Ok(score) Ok(score)
}, },
@ -127,18 +165,18 @@ pub fn run(input: &str, part: usize) -> Result<usize, ParseError> {
Catapult { coordinates: Coordinates { x: 0, y: 2 }, segment_number: 3 }, Catapult { coordinates: Coordinates { x: 0, y: 2 }, segment_number: 3 },
]; ];
let meteors = input.lines().map(Coordinates::try_from).collect::<Result<Vec<_>, _>>()?; let meteors = input.lines().map(Coordinates::try_from).collect::<Result<Vec<_>, _>>()?;
let score = meteors.iter().map(|meteor| { let score = meteors
for time in meteor.x.div_ceil(2)..(meteor.x).max(meteor.y) { .iter()
let target = Coordinates { x: meteor.x - time, y: meteor.y - time }; .map(|meteor| {
let shooters: Vec<_> = catapults.iter().filter(|c| c.can_hit(target).is_some()).collect(); (meteor.x.div_ceil(2)..=(meteor.x).max(meteor.y))
if !shooters.is_empty() { .find_map(|time| {
return shooters.iter().map(|c| let target = Coordinates { x: meteor.x - time, y: meteor.y - time };
c.segment_number * c.power_to_hit(target).unwrap() catapults
).min().unwrap(); .iter()
} .filter_map(|c| c.power_to_hit(target).map(|p| p * c.segment_number))
} .min()
panic!("A meteor could not be hit by any catapult"); }).expect("target unreachable")
}).sum(); }).sum();
Ok(score) Ok(score)
}, },