The Elves resume water filtering operations! Clean water starts flowing over the edge of Island Island. They offer to help *you* go over the edge of Island Island, too! Just hold on tight to one end of this impossibly long rope and they'll lower you down a safe distance from the massive waterfall you just created. As you finally reach Snow Island, you see that the water isn't really reaching the ground: it's being *absorbed by the air* itself. It looks like you'll finally have a little downtime while the moisture builds up to snow-producing levels. Snow Island is pretty scenic, even without any snow; why not take a walk? There's a map of nearby hiking trails (your puzzle input) that indicates *paths* (`.`), *forest* (`#`), and steep *slopes* (`^`, `>`, `v`, and `<`). For example: ``` #.##################### #.......#########...### #######.#########.#.### ###.....#.>.>.###.#.### ###v#####.#v#.###.#.### ###.>...#.#.#.....#...# ###v###.#.#.#########.# ###...#.#.#.......#...# #####.#.#.#######.#.### #.....#.#.#.......#...# #.#####.#.#.#########v# #.#...#...#...###...>.# #.#.#v#######v###.###v# #...#.>.#...>.>.#.###.# #####v#.#.###v#.#.###.# #.....#...#...#.#.#...# #.#########.###.#.#.### #...###...#...#...#.### ###.###.#.###v#####v### #...#...#.#.>.>.#.>.### #.###.###.#.###.#.#v### #.....###...###...#...# #####################.# ``` You're currently on the single path tile in the top row; your goal is to reach the single path tile in the bottom row. Because of all the mist from the waterfall, the slopes are probably quite *icy*; if you step onto a slope tile, your next step must be *downhill* (in the direction the arrow is pointing). To make sure you have the most scenic hike possible, *never step onto the same tile twice*. What is the longest hike you can take? In the example above, the longest hike you can take is marked with `O`, and your starting position is marked `S`: ``` #S##################### #OOOOOOO#########...### #######O#########.#.### ###OOOOO#OOO>.###.#.### ###O#####O#O#.###.#.### ###OOOOO#O#O#.....#...# ###v###O#O#O#########.# ###...#O#O#OOOOOOO#...# #####.#O#O#######O#.### #.....#O#O#OOOOOOO#...# #.#####O#O#O#########v# #.#...#OOO#OOO###OOOOO# #.#.#v#######O###O###O# #...#.>.#...>OOO#O###O# #####v#.#.###v#O#O###O# #.....#...#...#O#O#OOO# #.#########.###O#O#O### #...###...#...#OOO#O### ###.###.#.###v#####O### #...#...#.#.>.>.#.>O### #.###.###.#.###.#.#O### #.....###...###...#OOO# #####################O# ``` This hike contains `*94*` steps. (The other possible hikes you could have taken were `90`, `86`, `82`, `82`, and `74` steps long.) Find the longest hike you can take through the hiking trails listed on your map. *How many steps long is the longest hike?* Your puzzle answer was `2222`. \--- Part Two --- ---------- As you reach the trailhead, you realize that the ground isn't as slippery as you expected; you'll have *no problem* climbing up the steep slopes. Now, treat all *slopes* as if they were normal *paths* (`.`). You still want to make sure you have the most scenic hike possible, so continue to ensure that you *never step onto the same tile twice*. What is the longest hike you can take? In the example above, this increases the longest hike to `*154*` steps: ``` #S##################### #OOOOOOO#########OOO### #######O#########O#O### ###OOOOO#.>OOO###O#O### ###O#####.#O#O###O#O### ###O>...#.#O#OOOOO#OOO# ###O###.#.#O#########O# ###OOO#.#.#OOOOOOO#OOO# #####O#.#.#######O#O### #OOOOO#.#.#OOOOOOO#OOO# #O#####.#.#O#########O# #O#OOO#...#OOO###...>O# #O#O#O#######O###.###O# #OOO#O>.#...>O>.#.###O# #####O#.#.###O#.#.###O# #OOOOO#...#OOO#.#.#OOO# #O#########O###.#.#O### #OOO###OOO#OOO#...#O### ###O###O#O###O#####O### #OOO#OOO#O#OOO>.#.>O### #O###O###O#O###.#.#O### #OOOOO###OOO###...#OOO# #####################O# ``` Find the longest hike you can take through the surprisingly dry hiking trails listed on your map. *How many steps long is the longest hike?* Your puzzle answer was `6590`. Both parts of this puzzle are complete! They provide two gold stars: \*\* At this point, you should [return to your Advent calendar](/2023) and try another puzzle. If you still want to see it, you can [get your puzzle input](23/input).