Add 2024 Day 12
This commit is contained in:
parent
047100a358
commit
fe30d53314
9 changed files with 552 additions and 0 deletions
13
2024/day12_garden_groups/Cargo.toml
Normal file
13
2024/day12_garden_groups/Cargo.toml
Normal file
|
@ -0,0 +1,13 @@
|
|||
[package]
|
||||
name = "day12_garden_groups"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = "0.5.1"
|
||||
|
||||
[[bench]]
|
||||
name = "test_benchmark"
|
||||
harness = false
|
173
2024/day12_garden_groups/challenge.md
Normal file
173
2024/day12_garden_groups/challenge.md
Normal file
|
@ -0,0 +1,173 @@
|
|||
Why not search for the Chief Historian near the [gardener](/2023/day/5) and his [massive farm](/2023/day/21)? There's plenty of food, so The Historians grab something to eat while they search.
|
||||
|
||||
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
|
||||
|
||||
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a *region*. For example:
|
||||
|
||||
```
|
||||
AAAA
|
||||
BBCD
|
||||
BBCC
|
||||
EEEC
|
||||
|
||||
```
|
||||
|
||||
This 4x4 arrangement includes garden plots growing five different types of plants (labeled `A`, `B`, `C`, `D`, and `E`), each grouped into their own region.
|
||||
|
||||
In order to accurately calculate the cost of the fence around a single region, you need to know that region's *area* and *perimeter*.
|
||||
|
||||
The *area* of a region is simply the number of garden plots the region contains. The above map's type `A`, `B`, and `C` plants are each in a region of area `4`. The type `E` plants are in a region of area `3`; the type `D` plants are in a region of area `1`.
|
||||
|
||||
Each garden plot is a square and so has *four sides*. The *perimeter* of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type `A` and `C` plants are each in a region with perimeter `10`. The type `B` and `E` plants are each in a region with perimeter `8`. The lone `D` plot forms its own region with perimeter `4`.
|
||||
|
||||
Visually indicating the sides of plots in each region that contribute to the perimeter using `-` and `|`, the above map's regions' perimeters are measured as follows:
|
||||
|
||||
```
|
||||
+-+-+-+-+
|
||||
|A A A A|
|
||||
+-+-+-+-+ +-+
|
||||
|D|
|
||||
+-+-+ +-+ +-+
|
||||
|B B| |C|
|
||||
+ + + +-+
|
||||
|B B| |C C|
|
||||
+-+-+ +-+ +
|
||||
|C|
|
||||
+-+-+-+ +-+
|
||||
|E E E|
|
||||
+-+-+-+
|
||||
|
||||
```
|
||||
|
||||
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
|
||||
|
||||
```
|
||||
OOOOO
|
||||
OXOXO
|
||||
OOOOO
|
||||
OXOXO
|
||||
OOOOO
|
||||
|
||||
```
|
||||
|
||||
The above map contains *five* regions, one containing all of the `O` garden plots, and the other four each containing a single `X` plot.
|
||||
|
||||
The four `X` regions each have area `1` and perimeter `4`. The region containing `21` type `O` plants is more complicated; in addition to its outer edge contributing a perimeter of `20`, its boundary with each `X` region contributes an additional `4` to its perimeter, for a total perimeter of `36`.
|
||||
|
||||
Due to "modern" business practices, the *price* of fence required for a region is found by *multiplying* that region's area by its perimeter. The *total price* of fencing all regions on a map is found by adding together the price of fence for every region on the map.
|
||||
|
||||
In the first example, region `A` has price `4 * 10 = 40`, region `B` has price `4 * 8 = 32`, region `C` has price `4 * 10 = 40`, region `D` has price `1 * 4 = 4`, and region `E` has price `3 * 8 = 24`. So, the total price for the first example is `*140*`.
|
||||
|
||||
In the second example, the region with all of the `O` plants has price `21 * 36 = 756`, and each of the four smaller `X` regions has price `1 * 4 = 4`, for a total price of `*772*` (`756 + 4 + 4 + 4 + 4`).
|
||||
|
||||
Here's a larger example:
|
||||
|
||||
```
|
||||
RRRRIICCFF
|
||||
RRRRIICCCF
|
||||
VVRRRCCFFF
|
||||
VVRCCCJFFF
|
||||
VVVVCJJCFE
|
||||
VVIVCCJJEE
|
||||
VVIIICJJEE
|
||||
MIIIIIJJEE
|
||||
MIIISIJEEE
|
||||
MMMISSJEEE
|
||||
|
||||
```
|
||||
|
||||
It contains:
|
||||
|
||||
* A region of `R` plants with price `12 * 18 = 216`.
|
||||
* A region of `I` plants with price `4 * 8 = 32`.
|
||||
* A region of `C` plants with price `14 * 28 = 392`.
|
||||
* A region of `F` plants with price `10 * 18 = 180`.
|
||||
* A region of `V` plants with price `13 * 20 = 260`.
|
||||
* A region of `J` plants with price `11 * 20 = 220`.
|
||||
* A region of `C` plants with price `1 * 4 = 4`.
|
||||
* A region of `E` plants with price `13 * 18 = 234`.
|
||||
* A region of `I` plants with price `14 * 22 = 308`.
|
||||
* A region of `M` plants with price `5 * 12 = 60`.
|
||||
* A region of `S` plants with price `3 * 8 = 24`.
|
||||
|
||||
So, it has a total price of `*1930*`.
|
||||
|
||||
*What is the total price of fencing all regions on your map?*
|
||||
|
||||
Your puzzle answer was `1400386`.
|
||||
|
||||
\--- Part Two ---
|
||||
----------
|
||||
|
||||
Fortunately, the Elves are trying to order so much fence that they qualify for a *bulk discount*!
|
||||
|
||||
Under the bulk discount, instead of using the perimeter to calculate the price, you need to use the *number of sides* each region has. Each straight section of fence counts as a side, regardless of how long it is.
|
||||
|
||||
Consider this example again:
|
||||
|
||||
```
|
||||
AAAA
|
||||
BBCD
|
||||
BBCC
|
||||
EEEC
|
||||
|
||||
```
|
||||
|
||||
The region containing type `A` plants has `4` sides, as does each of the regions containing plants of type `B`, `D`, and `E`. However, the more complex region containing the plants of type `C` has `8` sides!
|
||||
|
||||
Using the new method of calculating the per-region price by multiplying the region's area by its number of sides, regions `A` through `E` have prices `16`, `16`, `32`, `4`, and `12`, respectively, for a total price of `*80*`.
|
||||
|
||||
The second example above (full of type `X` and `O` plants) would have a total price of `*436*`.
|
||||
|
||||
Here's a map that includes an E-shaped region full of type `E` plants:
|
||||
|
||||
```
|
||||
EEEEE
|
||||
EXXXX
|
||||
EEEEE
|
||||
EXXXX
|
||||
EEEEE
|
||||
|
||||
```
|
||||
|
||||
The E-shaped region has an area of `17` and `12` sides for a price of `204`. Including the two regions full of type `X` plants, this map has a total price of `*236*`.
|
||||
|
||||
This map has a total price of `*368*`:
|
||||
|
||||
```
|
||||
AAAAAA
|
||||
AAABBA
|
||||
AAABBA
|
||||
ABBAAA
|
||||
ABBAAA
|
||||
AAAAAA
|
||||
|
||||
```
|
||||
|
||||
It includes two regions full of type `B` plants (each with `4` sides) and a single region full of type `A` plants (with `4` sides on the outside and `8` more sides on the inside, a total of `12` sides). Be especially careful when counting the fence around regions like the one full of type `A` plants; in particular, each section of fence has an in-side and an out-side, so the fence does not connect across the middle of the region (where the two `B` regions touch diagonally). (The Elves would have used the Möbius Fencing Company instead, but their contract terms were too one-sided.)
|
||||
|
||||
The larger example from before now has the following updated prices:
|
||||
|
||||
* A region of `R` plants with price `12 * 10 = 120`.
|
||||
* A region of `I` plants with price `4 * 4 = 16`.
|
||||
* A region of `C` plants with price `14 * 22 = 308`.
|
||||
* A region of `F` plants with price `10 * 12 = 120`.
|
||||
* A region of `V` plants with price `13 * 10 = 130`.
|
||||
* A region of `J` plants with price `11 * 12 = 132`.
|
||||
* A region of `C` plants with price `1 * 4 = 4`.
|
||||
* A region of `E` plants with price `13 * 8 = 104`.
|
||||
* A region of `I` plants with price `14 * 16 = 224`.
|
||||
* A region of `M` plants with price `5 * 6 = 30`.
|
||||
* A region of `S` plants with price `3 * 6 = 18`.
|
||||
|
||||
Adding these together produces its new total price of `*1206*`.
|
||||
|
||||
*What is the new total price of fencing all regions on your map?*
|
||||
|
||||
Your puzzle answer was `851994`.
|
||||
|
||||
Both parts of this puzzle are complete! They provide two gold stars: \*\*
|
||||
|
||||
At this point, you should [return to your Advent calendar](/2024) and try another puzzle.
|
||||
|
||||
If you still want to see it, you can [get your puzzle input](12/input).
|
196
2024/day12_garden_groups/src/lib.rs
Normal file
196
2024/day12_garden_groups/src/lib.rs
Normal file
|
@ -0,0 +1,196 @@
|
|||
use core::fmt::Display;
|
||||
use std::collections::{BTreeSet, HashSet};
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub enum ParseError {
|
||||
EmptyMap,
|
||||
NonRectangular,
|
||||
}
|
||||
|
||||
impl Display for ParseError {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
Self::EmptyMap => write!(f, "Input must not be empty"),
|
||||
Self::NonRectangular => write!(f, "All input lines must be of equal length"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type Plant = u8;
|
||||
|
||||
struct Map {
|
||||
tiles: Vec<Plant>,
|
||||
height: isize,
|
||||
width: isize,
|
||||
}
|
||||
|
||||
impl TryFrom<&str> for Map {
|
||||
type Error = ParseError;
|
||||
|
||||
fn try_from(value: &str) -> Result<Self, Self::Error> {
|
||||
let width = value.lines().next().map(|line| line.len()).ok_or(Self::Error::EmptyMap)?;
|
||||
let tiles: Vec<u8> = value.lines()
|
||||
.map(|line| if line.len() == width {
|
||||
Ok(line.as_bytes())
|
||||
} else {
|
||||
Err(Self::Error::NonRectangular)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()
|
||||
.map(|v| v.iter().flat_map(|row| row.to_vec()).collect())?;
|
||||
let height = (tiles.len() / width) as isize;
|
||||
Ok(Self {
|
||||
tiles,
|
||||
height,
|
||||
width: width as isize,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Map {
|
||||
fn at(&self, (x, y): (isize, isize)) -> Option<Plant> {
|
||||
if x < 0 || y < 0 || x >= self.width || y >= self.height {
|
||||
None
|
||||
} else {
|
||||
// Some(self.tiles[y as usize][x as usize])
|
||||
Some(self.tiles[(y * self.width + x) as usize])
|
||||
}
|
||||
}
|
||||
|
||||
fn regions(&self) -> Vec<(usize, usize, usize)> {
|
||||
let mut outside = BTreeSet::from([(0, 0)]);
|
||||
let mut visited = HashSet::with_capacity((self.width * self.height) as usize);
|
||||
let mut regions = Vec::new();
|
||||
|
||||
// pre-allocate some per-region datastructures for performance reasons
|
||||
let mut open_set = Vec::new();
|
||||
let mut visited_this_region = HashSet::new();
|
||||
while let Some(start) = outside.pop_first() {
|
||||
if visited.contains(&start) {
|
||||
continue;
|
||||
}
|
||||
// safe to unwrap because we made sure this tile exists (for (0, 0) in the constructor,
|
||||
// and for every other tile because it wouldn't have been pushed onto `outside` otherwise)
|
||||
let this_plant = self.at(start).unwrap();
|
||||
visited.insert(start);
|
||||
open_set.clear();
|
||||
visited_this_region.clear();
|
||||
open_set.push(start);
|
||||
visited_this_region.insert(start);
|
||||
let mut area = 1;
|
||||
let mut perimeter = 0;
|
||||
let mut corners = 0;
|
||||
while let Some((x, y)) = open_set.pop() {
|
||||
[(-1,0), (1,0), (0,-1), (0,1)]
|
||||
.iter()
|
||||
.for_each(|(dx, dy)| {
|
||||
let next = (x+dx, y+dy);
|
||||
if !visited_this_region.contains(&next) {
|
||||
match self.at(next) {
|
||||
Some(plant) if plant == this_plant => {
|
||||
visited.insert(next);
|
||||
visited_this_region.insert(next);
|
||||
open_set.push(next);
|
||||
area += 1;
|
||||
},
|
||||
Some(_) => {
|
||||
outside.insert(next);
|
||||
perimeter += 1;
|
||||
|
||||
// To count the number of corners we found here, consider this
|
||||
// situation:
|
||||
//
|
||||
// ......
|
||||
// ..AC..
|
||||
// ..XY..
|
||||
// ..BD..
|
||||
// ......
|
||||
//
|
||||
// Say, we are at X and looking at Y, which is a different plant.
|
||||
// A - D are yet unknown, other tiles are irrelevant for now. We found:
|
||||
// - no corner, if A and B are the same plant as X, but C and D are different;
|
||||
// - 2 corners, if either all or none of A - D are plant X, and
|
||||
// - 1 corner otherwise.
|
||||
//
|
||||
// Therefore, the number of new corners can be expressed as:
|
||||
// ´2 - number of direct neighbours which are the same, but
|
||||
// their corresponding diagonal is different from this plant´.
|
||||
corners += 2 - [((x+dy), (y+dx)), ((x-dy), (y-dx))]
|
||||
.into_iter()
|
||||
.filter(|&n| self.at(n) == Some(this_plant) &&
|
||||
self.at((n.0+dx, n.1+dy)) != Some(this_plant)
|
||||
).count();
|
||||
},
|
||||
None => {
|
||||
perimeter += 1;
|
||||
|
||||
// Same situation as in the Some(_) case, but we are at an
|
||||
// edge, so C, D, and Y are automatically different to X
|
||||
// (namely None), which means we always have
|
||||
// ´2 - number of direct neighbours whith the same plant´
|
||||
// new corners.
|
||||
corners += 2 - [((x+dy), (y+dx)), ((x-dy), (y-dx))]
|
||||
.iter()
|
||||
.filter(|&n| self.at(*n) == Some(this_plant))
|
||||
.count();
|
||||
},
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
// In every 2D shape, the number of sides is equal to the number of corners. However, we
|
||||
// always double-counted them, since we looked at them from two directions. Consider
|
||||
// the corner in the middle of:
|
||||
//
|
||||
// XY
|
||||
// YY
|
||||
//
|
||||
// For X, we counted it looking in rightward and downward direction, for Y in leftward and
|
||||
// upward direction (both from the bottom right tile). In any case, we counted it twice
|
||||
// for each region. Since for the X case it is irrelevant whether all the Ys are the
|
||||
// same plant (or any plant at all), and the example is unchanged by rotation, we find,
|
||||
// that this example indeed represents all possible ways that a corner could ever appear.
|
||||
// Hence, our observation must hold for every corner on the map.
|
||||
regions.push((area, perimeter, corners/2));
|
||||
}
|
||||
regions
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run(input: &str) -> Result<(usize, usize), ParseError> {
|
||||
let map = Map::try_from(input)?;
|
||||
let regions = map.regions();
|
||||
let first = regions.iter().map(|(area, perimeter, _sides)| area * perimeter).sum();
|
||||
let second = regions.iter().map(|(area, _perimeter, sides)| area * sides).sum();
|
||||
Ok((first, second))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use std::fs::read_to_string;
|
||||
|
||||
fn read_file(name: &str) -> String {
|
||||
read_to_string(name).expect(&format!("Unable to read file: {name}")[..]).trim().to_string()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_samples() {
|
||||
let expected = [
|
||||
(1930, 1206),
|
||||
(140, 80),
|
||||
(772, 436),
|
||||
(692, 236),
|
||||
(1184, 368),
|
||||
];
|
||||
for (idx, expected) in expected.into_iter().enumerate() {
|
||||
let sample_input = read_file(&format!("tests/sample_input{idx}"));
|
||||
assert_eq!(run(&sample_input), Ok(expected));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_challenge() {
|
||||
let challenge_input = read_file("tests/challenge_input");
|
||||
assert_eq!(run(&challenge_input), Ok((1400386, 851994)));
|
||||
}
|
||||
}
|
140
2024/day12_garden_groups/tests/challenge_input
Normal file
140
2024/day12_garden_groups/tests/challenge_input
Normal file
|
@ -0,0 +1,140 @@
|
|||
YYYYYYYYYEJJEEEEEEEEEEEEEEGGGGGGGGGGGGGGGGGGCCCCCCCCCCWWCCLLLKKKKJKKKKKKFFFFFFFBBBBBBBBBBBAEEEEEEEEEEEEPPPPPPPPPOOOOZYYYZZZZZZAAUUUUUUUUUUUU
|
||||
YYYYYYYYNEEEEEEEEEEEEEEEEEGGGGGGGGGGGGGGGGGCCCCCCCCCCCCCCCLLLLKKKKKKKKKKKFFFFFBBFBOBBBBBBBBBEEEEEEEEEEEPPPPPPOOOOOOOZZZZZZZZZZZAAUKUUUUUUUUU
|
||||
YYYYYYNNNNYEEEEEEEEEEEEEEEGGGGGGGGGGGGGGGGGGCCCCCCCCCCCCCCCCLKKKKKKKKKKKKFFFFFFFFBBBBBBBBBBBBEEEEEEEEPPPPPPPOOOOOOOOOZZZZZZZZZUUUUUUUUUUUUUU
|
||||
YYYNNNNNNNEEEEEEEEEEEEEEEEEGGGGGGGGGGGGGGGVVVVCCCCCCCCCRREEEEKKKKKKKKKKKKFFFFFFXFBBBBBBMMBBBBBEEEEEFEPPPPPPOOOOOOOOOOOZZZZZZZZZZUUUUUUUUUUUU
|
||||
YYYNNNNNNWWEEEEEEEEEEEEEEEEGGGGGGGGGGGGGGGWVVVVVCCCCCCRRREEMEEKKKKKKKKKKKFFFFFXXFFBBBMBMMEEEEEEEEEEEPPPPPPPOOOOOOOOOOOZZZZZZZZZUUUUUUUUUUUUU
|
||||
YYNNNNNNNNEEEEEEEEEEEEEEEEEEIIIIGGGGGGGGGWWWVVVVVCCCCCCEEEEMEKKKKKKKKKKKKKFFFFXXXBBBMMMMMEEEEEEEEEEEPPPPPPPPOOOOOOOOOOOOZZZZUUZUUUUUUUUUUUUU
|
||||
YNNNNNNNNNNEEEEEEEEEEEEEEEEEIIIIGGGGGGGWWWWVVVVWWWWCWCCWEEMMMKKKKKKKKKKKKKFFFFXXXXXXMMMMEEEEEEEEEEEPPPPHHHHPPOOOOOOOOOOOZZZUUUUUUUUUUUUUUUUN
|
||||
NNNNNNNNNNNNEEKEEKKKVEEEEEEIIIIIGIGGVGGGWCWWWWVVVWWWWCWWMMMMKKKKKKKKKKKKKKXXXXXXXXXXMMMMMEEEEEEEEEEPPHHHHHHPPOOOOOOOOOOOZZZUUUUUUUUUUUUUUUUN
|
||||
NNNNNNNNNNNNAKKKKKKKKEEEEEEIIIIIIIGVVGGGWCCWWWWWWWWWWWWWWMMMMMMBBBKKKKBKKKBBXXXXXXXXMMXMMMEMMEEEEEQCPCHHHHHHPPOOOVVVOOOOZOOOOUUUUUUUUUUUUUNN
|
||||
JJNNNNNNNNNNNKKKKKKKKEEEETTTTTTTTTGGGGGGCCCWWWWMWMMWWWWWWWMMMMMMMBBBKBBBKBBBBXXXXXXXXXXMMMMMMEEEQQQCCCHHHHHHHPVOOVVVOVOOOOOOOOOUUUUUUUUUUNNN
|
||||
JJNNJNNNNNNJKKKKKKKKKKEEETTTTTTTTTTTIGGGCCCCWWWMMMMMWWWWWWWWWWMMKVBBBBNBBBBBBXXXXXXXXXXMMMMMMEEQQYQCCCHHHHHHHVVOOVVVVVOOOOOOOOOOUUQQUUUUNNNN
|
||||
JJNNJNNNJJJJJKKKKKKKKKKKZTTTTTTTTTTTTTCGCCCCWWWMMMMMWWWWWWWWWWMVKVBBBNNNNBBBBXXXXXXBXNMMMMMMMMHQQQQCCCCHHHHHVVVHVVVVVVVVOOOFFFOOQQQQUNNNNNNN
|
||||
JJJJJNNNJJJJJJKKKKKKKKKZZTTTTTTTTTTTTTCCCCCCCWMMMMWWWWWWWVWWVVVVVVBBBNXNNNNBBBBXXBBBMMMMMMMMMQQQQQQCCCCHHHHHHVVHVVVVVVVVOFFFFFOOQQQQUQNNNNNN
|
||||
JJJJJNIJJJJJKKKKKKKKKKKKZZZZITTTTTTTTTCCCCCCCCMMMMWWWWWWVVVVVVVVVVVBVNNNNNNNBBBBXBBBBBMMMMMMMKQQQQQQCQCHHHHHHVVVVVVVVVVVVFFFFFOQQQQQQQQNNNNN
|
||||
JJJJJJJJJJJJJKKKKKKKKKKKZLZZZTTTTTTTTTCCCCCCCCMMMMMMMWVWVVVVVVVVVVVVVNNNNNNNBBBBXBBBBBMMMMMMMQQQQQQQQQHHHHHMHHZVVVVVVVVVVVFFQOOOQQQQQQNNNNNN
|
||||
JJJJJJJJJJCCCKVKKKKKKKZZZLLLLZZCTTTTCCCCCCCCCCMMMMMMMMVVVVVVVVVVVVVVNNNNNNRRRRRBBBBBMMRRRMMMMMQQQQQQQQMMMXMMMHVVVVVVVVVVVVQQQQQOOOQQQQNNNNNN
|
||||
JJJJJJJJJJCCCCKKKKKKKZZZLLLLCCCCTTTTTTTTTCCLLMMMMMMMMMTVVVVVVVVVVVVVNNNNNNRRRRRRRBBBMMMMRMMMMQQQQQQQQQMMMMMMMEMVVVVVVVVVVVQQQHQQQQQQQQNNNNNN
|
||||
JJJJJJJJJJCCCCIKKKKKKZLLLLLDLCCCTTTTTTTTTCLLLMMMMMMMMTTTTVVVVVVVVVVVNNNNNNNRRRRRRRBBMMMMMMMMQQQQQQQQQQMMMMMMMMMMVVVVVVVVVVVVQHHHQQQQNNNNNNNN
|
||||
JJJJJJJJJCCCCCIKKKKKZZLLLLLLLCCCTTTTTTTTTCCLLLLLMMMEMTTTIIIIVVVVVVVVNNNNNNNNRRRRRRRRMMMMMMMMMQQQQQQQQMMMMMMMMMMMVVVVVVVVVVVVQHHHHQQQQNNNNNNN
|
||||
JJJJJJDJCCCCCCCCKKKKKCLLLLLLLCCCTTTTTTTTTLLLLLLEEMMEITIIIIIIIIIVVVVVNNNNNNNRRRRRRRRJJJMMMMMMMBBQQQQQQMMMMMMMMMVVVVVVVVVVZIHHHHHHHQQQNNKKNNNN
|
||||
JJJJJJDJCCCCCCCCCCCCCCLLLLSLLZZZZZTTTTTTTLLLLLLLEEEEIIIIIIIIIIIEVVNNNNNNNNRRRRRRRRRRMMMMMMMMBBBQBPQQQMMMMMMMMMVVVVVZVVVVZIHHHHHHHHHNNNNNNNNN
|
||||
DJJJDDDCCCCCCCCCCCCCCLLLLLSSSZZZZZTTTTTTTLLLLLLLLEEIIIIIIIIIIIIIINNNNNNNNNRRRRRRRRRRMMMMMMMMMBBBBBBMMMMMMMMMMMVVVVVZZZVVZIIIIHHHHHHNNNNNNNNN
|
||||
DDDJDDCCCCCCCCCCCCCCCLLLLLLSSZZZZZTTTTTTTLLLLLLIEEIIIIIIIIIIIIIIIINNNNNNNCNRRRRRRQQRMMMMMMMMMBBBBBBMMMMMMMMMMMMVVVVZZZZZZIIIIHHHHHHNNNNNNNNN
|
||||
DDDDDDCCCCCCCCCCCCCCCLLLLSSSSZZZZZTTTTTTTLLLLLLIIIIIIIIIIIIIIIIIPIPNNCNNNCCCCRRRRRMMMMMMMMMMMBBBBBBMMMMMMMMMMMVVVVVZZZZZZIIIHHHHCNNNNNNNNNNN
|
||||
IDDDDDCCCCCCCCCCCCCCLLNNLSSWSSZZZZTTTTTTTLLLLLIIIIIIIIIIQIQFQQIPPPPPPCNCCCCGCRRRMMMMMMMMMMMMBBBBBBBBBBMMMMMMMMMMMZZZZZZZZIIIHHHHHCNNNNNNNNNN
|
||||
IIIDDIIYCCCCCCCCCCCLLLLNNSSWWWWZWWWEELLLLLLLLLIIIIIIIIIIQQQQQQPPPPPPCCCCCCCCCRRMMMMMMMMMMMMMBTBBBBBBBBMMMMMMMMMBBBZZZZZZZZIHHHNNNNNNNNNNNNNN
|
||||
IIIDIIIICCCCCCCCLLLLLLLNNSSWWWWWWWWEEEEELLLLLIIDDDIIIIQQQQQQQQQPPPPPCCCCCCCCCRMMMMMMMMMMMMMMBBBBBBBBZZTMMMMMMMBBBBBBZZZZZZZNNNNNNNNNNNNNNNNN
|
||||
IIIIIIIIIKCKCCCCXLLLLLNNNSSWWWWWWEEEEEEELLLLLIIDDDIIIQQQQQQQQQPPPPPPPPPCCCCCCRMMMMMMMMMMCCCMTBBBBBZZZZZPMMMMKMBBBBBBZZZCZZZNNNNNNNNNNNNNNNXX
|
||||
IIIIIIIIIKCCCCCCXLLLLLNNNNNWWWWWWWEEEEELLELLLAIDDDDDDQQQQQQPPPPPPPPPPCCCCCCCCCCCMMMMMMMMMMMMMWBBBZZZZZLLLMMKKSBBSBBBZZZXZZZNNNNNNNNNNNNNNNXX
|
||||
IIIIIIIIIXCCCCXXXXXLLLNNNYNVWWWWWEEEEEELEELLLLDDDDDDDQQQQQQPPPPPPPPPCCCCCCCCCCCCCMMMMMMMMMMMMWWZZZZZZZZLLULLKSSSSBSBXNNXXRXXNNNNNNNNNNNXXXXX
|
||||
IIIIIIIIIXXCCXXXXXXXNNNNNYNVBBBWWBEEEEEEELLDDDDDDDDDDQQQQQQQQQPPPPPPPCCCCCCCCCCCCMMMMFFMMMMNMZZZZZZZZZLLLULLKSSSSSSXXXNXXXXXXNNNNNNNNNNXXXXX
|
||||
IIIIIIIXXXXXXXXXXXNAANNNNYNNBBBBBBBEJJEAEDDDDDDDDDQQQQQQQQQQPQPPPPPPPCCCCCCCCCCCTFFFFFFFMMMMMMMUZZZZZZLLLLLLLSSSSSSSXXXXXXXNNNNNNNNNNNNXXXXX
|
||||
IIIIIIIXXXXXXXXXXXNAANNNNNNNBBBBBBBJJJDDEDDDDDDDBBIIIQQQQQQQPPPPPPPCCCCCCCCCCCCUFYFFFFFNFMMMMEUUZZZZZAALLLLLLSSSSSSXXXXXXXXNNNNNNNNNNGGGXXXX
|
||||
IIIIIIIIIXXXXXXXXNNNNNNNNNDNBBBBBBBBJJDDDDDDDDDBBIIIQQQQQQQQPQPPRPPCCCCCCCCCCCCFFFFFFFFFFFFMEEUUZZQZQLLLLQSSLSSSSSSSXXXXXXXNNNNNNNNGGVGGGXXX
|
||||
IIIIIIIXXXXXXXXXXXXNNNNNNDDDBBBBBBBJJJDDDDDDDBBBBBBBQQQQQQQQQQPCRRRCCCCCCCCCCYYYYFFFFFFFFFFUUUUUUZQQQLLLLQSSSSSSSSSSXXXXXXNNNNNNNNNGGGGGXXGG
|
||||
IIIIIIIIXXXXXXXXXXXNNNNNDDBBBBBBBBBBBDDDDDDDBBBBBBBBQQQQQQQQQQPCRRCCCCCCCCCCCYYYFFFFFFFFFFTTUUUUUQQQQQQLLQQQSSSSSSSXXXXXXXXNNNNNNNNGGGGGGGGG
|
||||
IIIIIIXXXXXXXXXXXXXXNNNNDDBBBBBBBBBJJDDDDDDDBBBBBBBBBBQQQQQQCCCCCRCCCCCCCCCYYYYYYYFFFFFFFZTTTUUUQQQQQQQQQQQQQSSSSSXXXXXXXXNNNNNNNNNNGGGGGGGG
|
||||
IIIIIIIXXXXXXXXXXXXNNNNNNNNVVBBBBBBJJJJDDDDDBBBBBBBBBBBQQQQQQQCCCCCCCCCYCCYYYYYYYYYFFFFFFZTTTZQQQQQQQSSSQQQQSSSSSSXXXXXXXXXNNNNNNGGGOGGGGGGG
|
||||
IIINNNNZCXCXXCCXXXXNNNNVVVVVVBBBJJBBJJJDDKDKBBBBBBBTTBBQQQUQQQCCCCCCCYYYYCYYYYYYYYYFFFZZZZZZZZZQQQQSSSSSQQQQQQXXXXXXXXXXXXXNNNNNNGGGGGGGGGGG
|
||||
NNNNNNNZCCCXCCXXXXXXNNNOVVVVVBBBJJBBJJJJDKKKBBFTTTTTTBBQQQQQQCCCCCCCCYYYYYYYYYYYYYYZQQZZZZZZZZZZSSSSSSSSQSQQQQXXXXXXXXXXKXXNNNNNNNGGGGGGGGGG
|
||||
CCNNNNNNCCCCCXXXXFFXXNOOOOOVOOBBJJJJJJJJDKKKKKFFTTUTTBTQHQQHQCCCCCCCHYYYYYYYYYYYYZYZZZZZZZZZZZZZSSSSSSSSSSQQXXXXXXXXKXXKKKXNNNNNNNGGGGGGGGGG
|
||||
CCCCNNNCCCCCXXXXFFFXXXOOOOOVOOJJJJJJJJJJKKKKKKFFFFFFFTTHHQHHQCCCCCCCHYYYYYYYYYYYYZZZZZZZZZZZZZZZSSSHSSSSSSSSFXXXXXXXKKKKKKKNNNNNNNNGGGGGGGGG
|
||||
CCCCCCNCCCRCXXFXFFFOOOOOOOOOOOJAAAAAAJKKKKKKTTFFFFFFFTTHHHHHCCCCCCCCCYYYYYYYYYYYYYZZZZZZZZZZZZZZSSSSSSSSSSSSFFXXXSXXKKKKKKKNNNNNNNGGGGGGGGGY
|
||||
CCCCCCCCCCRCCXFFFFFFFOOOOOOOOOOOAAAAAKKKKFFFFFFFFFFFFTTHHHHHHCCCHCCHHHQQYYYYYYYZZZZZZZEEEEEEEZZZZZZSSSSSSSSFFFSXSSXXKKKKKKKKKNNNNNNGGGGGGGGY
|
||||
CCCCPCCCCCCXXXFFFFFFFOOOOOOOOOOOOAAAKKKKKFFFFFFFFFFFFTTTHHHHHCCCHCHHHHHQQYYYYYYYYYZHZZEEEEEEEZZZZSSSSSSSSSSSSFSSCSXHKKKKKKKKNNNNCCNGGGGGGGGG
|
||||
CCCCCCCCCCCCXXFFFFTTFOOOOOOOOOOOAAAKKKKKKFFFFFFFTTTTTTTTHHHHHHHHHHHHHHHQQYYYYYYYYYZZZEEEEEEEEEZZZSSSSSSSSSSOSSSSSSSHHHKKKKKKKNCCCCJGGGLGGGGG
|
||||
SCMMMCCCCCCVVFFFFFFTOOOOOOOOOOAAAAAKKKKKKFFFFFFFTTTTTTTTHHHHHHHHHHHHHHQQRRYYYYYBYYZEEEEEEEEEEEZZZSSSSSSSSSSOSSSSSSSSSKKKKKKRKKKSCCCCCLLLGGLL
|
||||
SCMMMMMTCTTTTTTFFFTTOOOOOOOOOOAAAAAKKKKKKFFFFFFFTTTTTTTHHHHHHHHXHHHNNNQQRRRRUNNBYMMEEEEEEEEEEEZCCCCCSSSSSSSOSSSSSSSSKKKKKKKRKKKCCCCXCLLLLLLI
|
||||
SSITMTTTTHTTTTTEETTTOOOOOOIOAAAAAAKKKKKKKFFFFFFFTTTUTTTTHHHHHHHHHHHHNNNRRRREEEEEEEEEEEEEEEEEEECCCCSSSSSSTSSSSSSSSSSSSKQQKKKKKSSCXCCJLLLLLLLL
|
||||
IIITTTTTTTTTTTTTTTTOOOOOOOOOAQAQQAKKKKKKKKKKKKKTTKUUDTTTTHUHSHHHHHHNNNRRRRREEEEEEEEEEEEEEEEEESSCCEEESSSSTTSSSSSSSSSSSSSSCKEEJJJJJJJJULLLLLUU
|
||||
IIIIMTTTTTTTTTTTTTTCOOXXOOOOQQAQQKKKKKKKKKKKKKKKKKUUDTTTUUUEUMMHHHHHNPRRRRREEEEEEEEEEEEEEEEEEISCCEEEESMMSSSSSSSSSSSSSSSSJJJEJJJJJJJJULLLLUUU
|
||||
IIIIMMTTTTTTTTTTTTDOOOXXOOOPQQQQQQYYYNKKKKKKKNNKKKUUUUUUUUUUUMMHHHHPPPRRPRREEEEEEEEEEEEEESSSSSSCCEEEEEEESSSSSSSSSSSSSSSJJJJJJJJJJJJUUUUUUUUU
|
||||
IIIMMMTRTTTTTTTTTTTEOOOOOOOIQQQQQQYYYNNNNNNNKNNKKKUUUUUUUHUUUMMMMPPPPPPPPFROSXXXXXXEEEEEEXSSSSSXCEEEEEEEBBSSSSSSSSSSSSSFJJJJJJJJJJUUUUUUUUUU
|
||||
IIITMMMTTTTTTTTTTTTZZZZDDIIIIQIQQQYNNNZNNNNNNNNNKKKUUUUUUUUMMMMMPPPPPPPPFFRRSXXXXXXEEEEEESSSSSXXXXXEEEEEEQSSEEESESSSSSSSRJJJJJJJTNUUNUUUUUUU
|
||||
IIITTTTTTLTTTTTTTTTZZZZIDIIIIIIQQYYNNNNNNNNNNNNNKKKUUUUUUUUUMMMMPPPPPPPPPSSSSSXXXXXXXXXXXXXSSSXXXXXXEEEEQQQEEEEEESSSSSJSSJJJJJJJTNNNNUUUUUUU
|
||||
IIIIIIIILLLLTTTTTTTZZZZIIIIIIIIQIAYYNNNNNNNNNNNNNKNUUUUUUUUUMMMPPPPPPPPPPSSSSSSXXXXXXXXXXXXXSXXXXXXXXEEEQQQEEEEEESSSSSSSSJJJJJJJJNANNUUUUUUU
|
||||
IIIIIIILLLLLZTTTTZZZZZIIIIIIIIIIIAANNNNNNNNNNNNNNNNUUUUUUUUUUMMMPPPPPPPPVVSSSSXDDDDXXXXXXXXXXXXXXXXXEEEEQQQQQEEEYSSSSCSDDDJJJJJJJNNNVVUUUUUU
|
||||
IIIIIIILLLKLZZZZTZZZZZIIIIIIIIIIIAANNNNNNNNNNNNNNNNUUUUUUUUMMMMMPPPPPPPPPVSSSSXDDDDXXXXXXXXXXXXXXXXHHQCQQQQQQQQQYSSSSSDDDFFJJJJNNNNNVVVVVUUU
|
||||
IIIIIIILSLKLZZZZTZZZZZZZIIIIIIIIAAANNNNNNNNNNNNNNUUUUUUUUUUUUMMMPPPPPPPPPSSSSSXDDDDXXXXXXXXXXXXXXKKKHQQQQQQQQQQQSSVSDDDDDDJJJJJJNNNNVVVVVVUU
|
||||
IIIIIIILLLLLZZZZZZZZZZLZLIIIIIIZQAANNNNNNNNNNNNNUUUUUUUUUUUMMMMPPPPPPPPPPPSGGSGDDDDXXXXXXXXXXXXXXKHHHQQQQQQQQQQQQSVDDDDDDDDJRRRNNNNNFVVVVVVV
|
||||
IIIIIILLLLLLZZZZZLZLLZLLLLIIIIZZZTTTTTNNNNNNNNNUUJUUUUUUUUUUNNMPPPPPPPPPPPSGGGGDDDDXXXXXXXXXXXXXXXHHHHHHQQQQQQQQQVVDDDDDDDRJRRRRNNNLVVVVVVVV
|
||||
IIIIIILLLLLLLLZZLLLLLLLLLLIIIZZZZTTTTTZNNNNYNNJJUJUJUUUUUUUNNNPPPPPPPPPPPFCCCGGDDDDGXXXXXXXXXXHHHHHHHHHHHHQQQQQQQQQDDDDDDDRRRRNNNNNVVVVVVVVV
|
||||
RRIPLILLLLLLLLLLLLLLLLLLLLLLIZTTTTTTTTTTZYYYYNJJJJUJJUUUUNNNNNNZPPPPPPPPDDDDDDDDDDDGXXXXXXXXXXXXHHHHHHHHHQQQQQQQQQDDDDDDDDRRRRRNNNRVVVVVVVVV
|
||||
RRPPLLLLLLLLLZLLLLLLLLLLLLLLIZTTTTZTTTTTZYYYYJJJJJJJNJUUJNNNNNNNRRPPPPCCDDDDDDDDDDDGXCOXXXXXXXXDDHHHHHHHHHQQQQQQQQDDWDDDDRRRRRRRRRRVVVVVVVVV
|
||||
RPPPLLLLLLLLLZLLLLLLLLLLLLLIIATTTTZTTTTTZZZZYJJJJJJJJJJJJJNNNNNNNRPPPCCCDDDDDDDDDDDGOOOXXXXXXXXXDDHHHHHHHHHQQQQQQQFDWWDDDRRRRRRRRRVVVVVVVVVV
|
||||
PPPPELLLLLZZZZLLLLLLLLLLLLLLAATTTTZTTTTTTTTPJJJJJJJJJJJJJJJNNNNRRRRPCCCCDDDDDDDDDDDDVOOXXOIOOXXXDDHHHHHHHHQQQQQQQQWWWWVVDRRRRRRRRRRVVVVVVVVV
|
||||
PWPPPPLLLLLLLZLLLLLLLLLLLLLLAATTTTZZZZTTTTTXXXJJJJJJJJJJJJSNNMMMMRRRRCCCDDDDDDDDDDDDOOOOOOOOOAXXKYHYYYHHHQQQQQQQQQWWWWWWWRRRRRIRRRRVVVVVVVVV
|
||||
PPPPPYLLLLLLLLLOLLLLLLLLLLLAAATTTTZZZZTTTTTXXXXXJJJJJJJNNJNNNMMMMMRRRRRRDDDDDDDDDDDDOMOOOOOOOAXXKYYYYYYYYQQQQQQHWWWWWWWWWRIIIIIIRZVVVVVVVVVV
|
||||
PPPPPPPPSSLLLLBBGGLLLLLLLTTTTTTTTTTZZZTTTTTXXXXXJJJJJJJNNNNNNMMMKKMRRRRRDOOOOOOOOODDDDDDDOOOOXXXKKYYYYYYMMQQQQHHWWWWWWWWIIIIITIZZZVVVJVVVVVV
|
||||
PPPPPPPPPSSLBBBGGGGLLLLLATTTTTTTTTTZZZZZXXXXXXXXXJSJJJJJJJNNNMMMMMMRRRRRDOOOOOOOOODDDDDDDHOOOPPKKKYYYYYYYYQQQQHHHWWWWWWIIIIIIIIWZZZZZVVVVVVV
|
||||
PPPPPPPPSSBBBBBBBBBBLLLLATTTTTTTTTTZZZZUUXXXXXXXJJJJJWJJJJBNNNNMMMMMRRROOOOOOOOOOODDDDDDDHOPPPPKKKKYYYYYYLQHHHHOHHIIWWIIIIIIIIIIIZZZVVVVVVVV
|
||||
PPPPPPPPPBBBBBBBBBBAALAAATTTTTTTTTTZZZZZXXXFFFJJJJJJJJJJJJBNNBMMMMMMRRROOOOOOOOOOODDDDDDDOPPPPKKKKAYYYYYLLQHHOOOHHHIIIIIIIIIIIIIIZZZZVVVVVVV
|
||||
PPPPPPPPPPBBBBBBBBAAAAAANTTTTTTTTTTZUZUXXXYBBFJJBBJJJBBBMMBLLDRRRRRRRRROOOOOOOOOOODDDDDDDIIIIIIIKKAYYKYYYLQAOOOOOOIIIIIIIIIIIIIZZZZZZZVVVVVR
|
||||
PPPPBBBBPBBBBBBBBBBAAAAANTTTTTTTTTTZUUUXXXYBBBBBBBBJJBBBBBBLLDDRRROOOOOOOOOOOOOOOOOOOOHIIIIIIIIIAAAAYYYYYAAAPPOOOIIIIIIIIIIIIIIIZZZZZZZZVVVR
|
||||
PPPPPTBBBBBBBBBBBBBAAAANNTTTTTTTTTTZZUUXXUBBBBBBBBBBBBBBBBDDDDDRDROOOOOOOOOOOOOOOOOAOOHIIIIIIIAAAAAAAAAAYAAAAAWWOWIIIIIIIIIIIOOIZZZNZZZZVVRR
|
||||
PPPPPPBBBBBBBBBBBBAAAANNNNNNNNNNNNZZZUUUUUBBBMBBBBBBBBBBBBDDDDDDDROOOOOOOOOOOOPOOOOOOOHIIIIIIAACCCAAAAAAAAAAAAWWWWWBIIIIIIIIIOOUUZZZZZRZRRRR
|
||||
PPPPPBBBBBBBBBBBBAAAANNNNNNNNNNNNNNUUUUUUUUBBMMBBBBBBBBBBBDOOOOOOOOOOOOOOOOOOOPOPOOOOOOIIIICICACUUUUAAAAAAAAAAWWWEWBIIIIIIIIIIUUUZUUZRRRRRRR
|
||||
VPPPBBBBBBBBBBBBAAAAAARRRRRNNNNNNNNUUUUUUUUUMMMMBBBBBBBBDDDOOOOOOOOOOOOOOOOOOOPPPPOOOIIIIICCCCCCCUUUUAAAAAAAWWWWWEWBIIIIIIUIIIUUUUUUUURRRRRR
|
||||
VPVPUBBBBBBBBBBBBAARRRRRRRRRNNNNNNNUUUUUUUUMAAMMBBBBBBDDDDDOOOOOOOOOOOOOOOOOPPPPPPOOOOIIIIICCCCCUUUMUUUAAAAVWWWEWEEIIIIITUUUUUUUUUUUUURRRRRR
|
||||
VVVVBBBBBBBDDDYBAAARRRRRRRRRNUNNUUUUUUUUUUUMMMMMBBBBBBBDDDDOOOOOOOOORKKKKRRPPPPPPLPPOOIIIIICCCCCCCUUUUUAAWSSSSSEEEEEEEEETTTUUUUUUUUUUURRRRRR
|
||||
VVVVBBBBBBDDDDDBOAARRRRRRRRRUUUUUUUUUUUUUUMMMMMMBBBBBBBDDDDDDDKNDRRRRKKKKKRRRPPPPLPPIIIIIIICCCCCCCUUUUUUUUSSSSSSEEEEEEETTTTEUUUUUUUUUURRRRRR
|
||||
VVVVVVVNDDDDDDDDOOOORRRRRRRRRUUUUUUUUUUUUUUUMZXXBBBBBHBDDDDDDHKKKKKKKKKKKKRRRRPPPPPPIIIIIIICCCCCCUUUUUUUUUSSSSSSSSSEEETTTTTUUUUUUDDUUURRRRRR
|
||||
VVVVVVVDDDDDDDDDOOOORRRRRRRUUUUUUUUUUUUUUUUUZZZBBBBBBBDDDDDDDDKJJKKKKKKKKKKKKKPPPPPPIIIIIICCCCCCCUUUUUUUNNSSSSSSSMMEMETTTTTTUUQQDDDDQUURRRRR
|
||||
VVVVVVVVDDDDDDOOOOOORRRRRRUUUUUUUUUUUUUUUUUUUZZBBBUUUUDDDDDDDKKJJKKKKKQKKKKKKGPPPPPPPIIIIIIICCCCCUUUUUUUNSSSSSSSSMMEMEETTTTTUUQQQQDDQQQPPPPP
|
||||
VVVVVVVHHDDDDDDOOOOOORRRRRRRJUUUUUUUUUUUUUUZZZZZXBZZZDDDDDDDDJJJJJKKKKKKKKKKKGFPVPPPPIIIIICCCCCQCUUUUUUUUTUSSSSSMMMMMMETTTTTUQQQQQDDQQQPPPPP
|
||||
VVVVVVHHHDDDDDDOOOOOOORRRRRRJUSJUUJUUUUUHUZZZZZZXZZAAADDDDGGDJJJJKKKKKKKKKKKKKFPPFPPIIIIIIIIIIIIUUUUUUUUUUUUSSSSSSMMMUCCTCTTTTQAQQQQQQQPPPPZ
|
||||
VVVVVVHHHDSDDOOOOOOOOORRRRRRJUSJJJJZUZZUZZZZZZZZZZZAADDDDDGGDJJJJKKKKKKKIKKFFFFPFFIIIIIIIIIIIIIUUUUUUUUUUUUUSSSSSSMUUUCCCCCCCCAAAQQQQQQQPPPP
|
||||
VVVVVVHHNNNODOOOOOOOOORRRRRRJJJJJJAZZZZZZZZZZZZZZZDDDDDDDDGGGJJJKKKKKKKKKKKFFFFFFFIFIIIIIIIIIIIIUUUUUUUUUYUNSSSSSSMSUUCCCCCCCCAAAAAAAAQQQQQQ
|
||||
VVNNNVHHNNNOOOOOOOOOOOOJAARJJJJGJJJZZZZZZZZZZPPPZZDDDDDDDDDGGJJJCCKKKKKKKKFFFFFFFFFFFIIIIIIIIIIUUUUUUUUUUUNNSSSSSSSSSCCCCCCCAAAAAAAAAAAQQQQQ
|
||||
VVNNNNNNNNNOOOOOOOOOOOOJJJJJJJJJJJJZZZZZZZZZZPPPZZZDDDDDDDDDDDDCCCCKKKKKCFFFFFFFFFFFGGIIIIIIIIIUUUUNNUNNNNNSSSSSSSSSSSCCCCCCAAAAAAAAAAQQQQQQ
|
||||
TTTNNNNNNNNOOOOOOOOOOOOJJJJJJJJJJJJZZZZZZZZPPPPPPPZDDDDDDDDDDDDDCCKKKKKCCCFFFFFFFFTFRRRRRIIIIAAAXUUNNNNNNNSSSSSSSSSSSZCCCCCCAAAAAAAAAZEQQQQQ
|
||||
TNNNNNNNNNNNNOOOOOOOOOOJJJJJJJJJJJJZZZZZZZZPPPPPPPPDDDDDDDDDDDDCCCKCCCCCCCCCFFFFFFRRRRRRRRIIIAAAUUUUNNNNNISSSSSSSSSSZZCVCCCCAAAAAAAAAZZQQQQQ
|
||||
TNNNNNNNNNNNNOOOOOOOOOOJJJJJJJJJJJJJJZZZZPPPPPPPPPPDDDDDDDDDDDDDCCCCCCCCCCCCFFFXFFIIRRRRRRAIIAAAFFUNNNIINISSSSSSSSSSSSSSCCCCCAAAAAAAZZZZQQQQ
|
||||
TNNNNNNNNNNNOOOPOOOOOOOLJJJJJJJJJJJJJZZZZPPPPPPPPPPDHDDDDDDDDYDDDCCCCCCCCCCCXSFXXXXIRRRRRRAAAAAAAANNNIIIIIISSSSSSSSSSSSSSSSCOAAAAAAAZZAZQQQQ
|
||||
NNNNNNNNNNNUUOPPPPPPOOOJJJJJJJJJJJJJZZZTTTPPPPPPPPPPHDDDDDDDDYDDDDCCCCCCCCCXXXXXXXXXRRRRRRRRAAAAAANNNIIIIIISSISSSSSSSSSSSSSSOAAAAAAAAAAAQQQQ
|
||||
NNNNNNNNNNNUUPPPPPPPPOOJYYJJJJJJJJJJZZZTTTTTTTTTPPNNDDDDDDDDDDDDDCCCCCCCCCCXXXXXXXXXXXRRRRRAAAAAAANNNIIIIIIIIISSSSSSSSSSSSRRAAAAAAFFAAAAAQQQ
|
||||
NNNNNNUNNNPUUUUPPPPPPPPPJJJJJJJJJJJJZZZTTTTTTTTTPPPNNDDDDDDDDDDDDCCCCCCCCCCXXXXXXXXXXXRRRRRAAAAAANNNNIIIIIIIIISSSSSSFFRRSRRRAAAEFFFFAAAAAAQQ
|
||||
NNNNNNUUPPPUUUPPPPPPPPPBIBJJJJJJTTTTTTTTTTTTTTTTPPPNNNYDDDDDDDDDDCCCCCCCCCCCXXXXXXXXXXRRRRRAAARJNNNNNIIIIIIIISSSSSSSFFRRRRRRRREEFFFFTAFFVRQQ
|
||||
NCNNNNUUPPPPUUUPPPPPPPBBBBCJBJJJTTTTTTTTTTTTTTTTPPPPYNYYDVDDDDDDDDCCCCCCCCCCXXXXXXXXXXRRRRRRRRRJJJNJJIIIIIIIISSSFFFFFFFFRRRRRRREFFFFFFFFRRRR
|
||||
CCCNUNUUPPPPUUPPPPPPBPBBBBBBBJBBTTTTTTTTTTTTTTTTPPPYYYYYVVDDDDDDDDCCCCCCCCCCBXXXXXXXRRRRRRRRRRRJJJJJJJIIIISSSSSSFFFFFRRRRRRRRXFFFFFFFFFFRRRR
|
||||
CCCCUUUUPPPPUUBPPPPPBBBBBBBBBBBBTTTTTTTTTTTTTTTTPPPYYYYYDDDDDDDEDCCCCCCCCCKKKKKKKKKKRRRRRRRRJJJJJJJJJJIJJJJSSSSSFFFFFRRRRRRRRXFFFFFFFGFRRRRR
|
||||
CCCUUUUUUPPPPUUPPPPPTTTBBBBBBBBBTTTTTTTTTTTTTTTTPPPYYYYYDDDDDDDDDCCCRCCCCCKKKKKKKKKKKKKKKKKKKJJJJJJJJJJJJJOSJSSSFFFFFFRRRRRRRRRFFFFFRGRRRRRR
|
||||
CCCUUUUUPPUUPUIPPPPPTTBBBBBBBBBYTTTTTTTTTTTTTTTTBBPPPYYYYYDDDDDDDCCCCCCCCCKKKKKKKKKKKKKKKKKKKJJJJJJJJJJJJJJJJSSSFFFFRRRRRRRRRRRQQFQQRRRRRRRR
|
||||
CCUUUUUUUUUUUNGGTPPPTTBBBBBBBBBYTTTTTTTTTTTTTTTTGBGYYYYYYYYDDDDDDDCCCCCCBCKKKKKKKKKKKKKKKKKKKJJJJJJJJJJJJJJJJSSFFFFFRRRRRRRRRRRQQFQQRRRRRRRR
|
||||
UUUUUUUUUUUUUGGGTPTTTTTBBBBBBBBBYYYYTTTTTTGGGGGGGGGGGYYYYYYDDDDDDNCCCCCCBBKKKKKKKKKKKKKKKKKKKJJJJJJJJJJJJJJJJJFFJFFFRRRRRRRRRRQQQQQQQRRRRRRR
|
||||
UUUUUUUUUUUUUGGGTTTTSTBBBBBBBBBYYYYYTTTTTTGGGGGGGGGGGYYYYYYYDGDDDDFCCCCBBBKKKKKKKKKKKKKKKKKKKJJJJJJJJJJJJYJJJJJJJFRRRRRRRRHWRRRQQQQQQRRRRRRR
|
||||
UUUUUUUUUGUUGGGGGGGSSTSSBBBBBBBBYYYYYYYYYWGGGGGGGGGGYYYYYYYGGGGGGGFCCCCBBBKKKKKKKKKKKKKKKKKKKJJJJJJJJJJJYYJJJJJJJJJRRRRRFRHWWWWQQQQQQRRRRRRR
|
||||
UUUUUUUUUUAUGGGGGGSSSSSSSBBBBBBYYYYYYYYYWWGGGGGGGGGYYYYYYYYGGGFGFFFFFCBBBBKKKKKKKKKKKKKKKKKKKUJJJJJJJJJJYYJJJJJJJJJJRRRRRWWWWWWWQQQQQRLLRRRR
|
||||
GUUUUUUUUUGGGGGGGGSSSSSSSSBBBBBYYYYYYYWYWWWGGGGGGGPPGJYYYYYYFFFFFFFFFFFFBBBBBBBBBBBKKKKKKKKKKUJJJJJJJYYYYYYJJZJJJJJJJRJRBWWWWWWWWWTQQLLLLRRR
|
||||
GUUUUUUUUUUGGGGGGGGSSSSSSSSRYYYYYYYYYYWWWWWWGGGGGGGPGGYYYYYFFFFFFIFFFFFBBBBBBBBBBBCKKKKKKKKKKUUJJJJJYYYYYYYJJZJJJJJJJJJWWWWWWWWWWWQQQLLLLLLR
|
||||
GGGUUUUUUUGGBBBCCBBSSSSSSSSRYYYYYYYMMWWWWWWWGGGGGGGGGYYYYYYFFFFFFFFFFFFFFFBBBBMMBBCKKKKKKKKKKUUUJJJJJJJYYZZZDZZJJJJJJJWWJWMWWWWWWWLLLLLLLLLL
|
||||
GGGGUUUUGGGGBBCCCBBPPSSSSSSSSSOOMMYMWWWKKWWWGGGGGGGGEEEEYYYDFDDFFFFFFFFFFFBBBBBMBBCCCKKKKKKKKUUUJPPJJYYYYYZZZZJJJJJJJJJWJWWWWWWFWWWLLLLLLLLL
|
||||
GGGGGUUUGGGGBBBCBBBBBBRSSSSSSBMMMMMMMWWKKKKWGGGGGGGEEEEEYYYDEDMMMFFJJFFCMMBBBMMMCCCCHCUUUUUUUUUUUUPPPPPYYYYZZZZZJJJJJJJJJJWCWWWWWLLLLLLLLXLX
|
||||
PGGGGGGGGBBBBBBBBBBBBBBSSSSSSBBBMMMMMWKKKKKKGGGGGGGGEEEEEDRDDDMDDDDJJJJJMMMMMMMMMCMCHCUUUUUUUUUUUUPEPEYYYYYZZZZJJJJJJJJJJJWCCWWWWTTLLLLLXXXX
|
||||
PGGGGGGDGGBBBBBBBBBBBBBIISSSSSBBMMMMMKKKKKKKKKGGGGGBBBBEBDDDDDDDDDDJJJJMMMMMMMMMMMMHHCUUUUUUUUUUUUPEEEEYYYYZZZZJJJJJJJJJJJCCCWWWWTTLLXXLXXXX
|
||||
PPPGGDDDDBBBBBBBBBBBBNBISSSSSSBBBMMMMKKKKKKKKKKGGLBBBBBBBDDDDDDDDDDJJJJMMMMMMMMMMHHHHHHHHHUUUUUUUPPPEEEEEYZZZZZJJJJJJJCCCJCCCWWCCTTTLLXXXXXX
|
||||
PPPGGDDDDDDBBBBBBBBNNNBBSSSSSSSBBBMMMMKKKKKKKKGGABBBBBBBBDDDDDDDDJJJJJJJJMMMMMMMMMHHHHHHHHHUUUUUUUPEEEEECZZZZZZZZJJJJCCRCCCCCCCCTTTTLLLXXXXX
|
||||
PPPPGDDDDDBBBBBBBBBNNNNNNMSSSSSSBBMBBBBKKKKKKKKKKKBBBBBBBBBYDDDDDJJJJJJYYYYMMMMMMMHHHHHHHHHUEEUUUZEEEEEECZZZZZZZZZJJJCCCCCCCCTTTTTTTLXXXXXXX
|
||||
PPPBPRDDDDKBBBBBBBBBNNNNMMSSSSSBBBBBBBBKKKKKKKKKKKBBBBBBBBBDDDDDDJJEEEEYYYYMMMMMMMHHHHHHHHUUEEEEEEEEEEEZZPZZZZZZZZJJAECCCCCCCHHHTTTTWXWXXXXX
|
||||
PPPPPRRDDVBBBBBBBMMMMNNNMMMSSSZZBBBBBBBKKKKKKKKKKBBBBBBBBBBDDDDDDJEEEEEEEEYMAMMMMMMMMHPHHHUUUEEEEEEEEEEZZZZZZZZZZZZJAACCCCCHHHHTTTTTWWWWWWWX
|
||||
PPPPPPPPVVVBBBBBBNNMMMMMMSSSZZZZZBBBBBKKKKKKKKKKKBBBBBBBBBBBDDDDDJJEEEEEEEEMAMMMMMMMMMMMMHHUUEEEEEEEEEZZZZZZZZZZZZZAAAACCCCCHHHTTTTTMWWWWWWX
|
||||
PPPPPPPPPVVBBBBBBMMMMMMMMMMZZZZZZZZZBBKKKKKKKKKKBBBBBBBBBBBBDGDQEEEEEEEEEEEEEOMMMMMMMMUCUUUUUUEEEEEEEEEZZZZZZZZZZZZBAAAAACCCCAHHHHWMMWWWWWWX
|
||||
PPPPPPPPNDDDBBBBMUMMMMMMMMMMMZZZZZZBBZKKKKKKKKKKBBBBBBBBBBBLDBUEEEEEEEEEEDDDDDDDDDDDDMUUUUUUUEEEEEEEEEEZZZZZZZZZZZAAAAAAAACAZAHHHWWWWWWWWWWW
|
||||
PPPPPPPPDDDDGBBBMMMMMMMMMMMMMMZZZZZZZZKKKKKKKKKKBBBBBBBBBBBBBBBEEEEEEEEEEDDDDDDDDDDDDJUYUUUUUEEEEEEEZZZZZZZZZZZZWWAAAAAAAAAAAAAAWWWWWWWWWWWW
|
||||
PPPPDDDDDDDGGBBMMMMMMMMMMMMMMMZZZZZZZZZZKKDKKKKKBBIBIIBBBBBBBQEEEEEEEEEEEDDDDDDDDDDDDJJYUUUUUEEEEEEEZHZZZZZZZZZZZAAAAAAAAAAAAAAAWWWWWWWWWWWW
|
||||
PDDDDDDDDDDDDDDFFMMMMMMMMMMMMZZZZZZZZZZZKKKKKKKDDIIIIIIBBBBBBBEEEPPEEEEEEEEEEEEDDDDDDYYYUUUUUUEEEEEEZZZZZZZZZZZZZAAAAAAAAAAAAAAAGWWWWWWWWWWW
|
||||
PDDDDDDDDDDDDFFFFMMAAAMMMMPMZZZZZZZZZZSZZWKDDDDDDIIIIIIIIBBBBBHEEPPPEEEEEEEEEEEDDDDDDYYYUUUUUEEEEEEEZZZZZHHHHHHHHHHAAAAAAAAAAAAAWWWWWWWWWWWW
|
||||
DDDDDDDDDDDDDFFFFFFAAAMMMMMMZZZZZZZZZZZZZZZZDDDDDIIIIIIIIIBBLBPPVPPPEPEEEEEEEEEDDDDDDYYYYYUUUUUHEEEEZZZZZHHHHHHHHHHHAAAAAAAAAAAAWWWWWWWWWWWW
|
||||
DDDDDDDDDDDDXXFFFFFAAAMMMMMMZZZZZZZZZZZZZZDDDDDDDIIIIIIIIILLLPPPPPPPEPPPPEEEEEEDDDDDDYYYYYUUUHHHHHZZZZZZZHHHHHHHHHVVVAAAAAAAAAAAWWWWWWWWWWWW
|
||||
DDDDDDDDDDDSXXFFFFFAAAMMMAZZZZZZZZZZZZZZOZIIDZZZZZIIIIIIIILLLPPPPPPPPPPPPPPPEELDDDDDDYYYYYUUUHHHHHZZZZZZZHHHHHHGHVVAAAAAAAAAAAAAAWWWWWWWWWWW
|
||||
DDDDDDDDDDXXXXFFFFAAAAAMAAAZZZZZZZZZZZZZOOIIDDZZIIIIIIIIIILLLPPPPPPPPPPPPPPPGLLLGDDDDYYYYYUHHHHHHHZZZZZHHHHHHHHHHVVVAAAAAAAAAWWAFWWWWWWWWWWW
|
||||
DDDDDDDDDDDXXXFFFAAAAAAAAAAZZZZZZZZZZRRIIIIIIIZZZZIIIIIIIILLZPPPPPPPPPPPPPGGGGLLGDDDDYYYYYUUUUUHHHZZZZZHIHHHHHVVVVVAAAAAAAAAAAAFFWWWWWWWQWQW
|
||||
DDDDDDDDDDDXXFFFFAAAAAAAAAAAAAAZZZZZZIIIIIIIIIIIZZIZIIIIIILZZZPPPPPPPPPPJPGGJGLGGGGGYYYYYYUUUUUIIIPIIIHHIIHHHVVVVVUUUUAAAFAAAFFFFWWWWWWQQQQQ
|
||||
NDDDDDDDDDDXXFFFFAAAAAAAAAAAAAAZZZZIIIIIIIIIIIIIIZIZZIIIIIZZZXPPPPPPPPPJJPDGGGGGGGGGNGYYYYYUUUUUIIIIIIHHIIIIHVVVVUUUUUUUAFAAAFFFFFFWQWQQQQQQ
|
||||
DDDDDDFDDFFFXFFFAAAAAAAAAAAAAAAXZXZZIIIIIIIIIIIIZZZZZIIIIZZZZPPPPPPPPPPPPPGGGGGGGGGGGGYYYYYUUJJUIIIIIIIIIIIVVVVVUUUUUUUUAFFFFFFFFFQQQQQQQQQQ
|
||||
VVDDDDDFFFFFXFFFFAAAAAAAAAAAAXXXXXXZIIIIIIIIIIIIIZZZZZZZZZZZZPPPPPPPPPPDGGGGGGGGGGGGGGYYYYYUJJJJJJIIIIIIIIIIIIVVUUUUUUUUUUUFFFFFFFFQQQQQFFQQ
|
||||
VVDDDFFFFFFFFFFFFAAAAAAAAAAAXXXXXXIIIIIIIIIIIIIIZZZZZZZZZZZZZPPPPPPPPPPPDGGGGGGGGGGGGGGGYYYUUUJJJJIIIIIIIIIIIVVVUUUUUUUUUUUUFFFFFFFQQQFFFFFQ
|
||||
VVFFFFFFFFFFFFFFFAAAAAAAAAAAXXXXXXIPIIIIIIIIIIZZZZZZZZZZZZZZZDDDDDDPPPPDDDGGGGGGGGGGGGGGYYYYYJJJJIIIIIIIIIIIVVUUUUUUUUUUUUUUUFFFFFFQFFFFFFFF
|
||||
FVFFFFFFFFFFFFFFFAAAAAAAAAAXXXXXXXIIIIIIIIIIIIZZZZZZZZZZZZZZZDDDDDDDPDDDDGGGGGGGGGGGGGGGYYYYJJJJJJJIIIIIIIIIVUUUUUUUUUUUUUUUUFFFFFFFFFFFFFFF
|
||||
FFFFFFFFFFFFFFFFFFAAAAATTAXXXXXXIIIIIIIIIIIIIIIZZZZZZZZZZZZZZDDDDDDDDDDDDDGGGGGGGGGGGGGGJJJJJJJJJJJJIIIIIIIIVVVUUUUUUUUUUUUUFFFFFFFFFFFFFFFF
|
10
2024/day12_garden_groups/tests/sample_input0
Normal file
10
2024/day12_garden_groups/tests/sample_input0
Normal file
|
@ -0,0 +1,10 @@
|
|||
RRRRIICCFF
|
||||
RRRRIICCCF
|
||||
VVRRRCCFFF
|
||||
VVRCCCJFFF
|
||||
VVVVCJJCFE
|
||||
VVIVCCJJEE
|
||||
VVIIICJJEE
|
||||
MIIIIIJJEE
|
||||
MIIISIJEEE
|
||||
MMMISSJEEE
|
4
2024/day12_garden_groups/tests/sample_input1
Normal file
4
2024/day12_garden_groups/tests/sample_input1
Normal file
|
@ -0,0 +1,4 @@
|
|||
AAAA
|
||||
BBCD
|
||||
BBCC
|
||||
EEEC
|
5
2024/day12_garden_groups/tests/sample_input2
Normal file
5
2024/day12_garden_groups/tests/sample_input2
Normal file
|
@ -0,0 +1,5 @@
|
|||
OOOOO
|
||||
OXOXO
|
||||
OOOOO
|
||||
OXOXO
|
||||
OOOOO
|
5
2024/day12_garden_groups/tests/sample_input3
Normal file
5
2024/day12_garden_groups/tests/sample_input3
Normal file
|
@ -0,0 +1,5 @@
|
|||
EEEEE
|
||||
EXXXX
|
||||
EEEEE
|
||||
EXXXX
|
||||
EEEEE
|
6
2024/day12_garden_groups/tests/sample_input4
Normal file
6
2024/day12_garden_groups/tests/sample_input4
Normal file
|
@ -0,0 +1,6 @@
|
|||
AAAAAA
|
||||
AAABBA
|
||||
AAABBA
|
||||
ABBAAA
|
||||
ABBAAA
|
||||
AAAAAA
|
Loading…
Add table
Add a link
Reference in a new issue