Added Solution for 2019 day 18

This commit is contained in:
Burnus 2023-03-25 17:56:02 +01:00
parent 0a5a3c79fb
commit a7f88129cf
6 changed files with 666 additions and 0 deletions

View file

@ -0,0 +1,8 @@
[package]
name = "day18_many-worlds_interpretation"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View file

@ -0,0 +1,318 @@
As you approach Neptune, a planetary security system detects you and activates a giant [tractor beam](https://en.wikipedia.org/wiki/Tractor_beam) on [Triton](https://en.wikipedia.org/wiki/Triton_(moon))! You have no choice but to land.
A scan of the local area reveals only one interesting feature: a massive underground vault. You generate a map of the tunnels (your puzzle input). The tunnels are too narrow to move diagonally.
Only one *entrance* (marked `@`) is present among the *open passages* (marked `.`) and *stone walls* (`#`), but you also detect an assortment of *keys* (shown as lowercase letters) and *doors* (shown as uppercase letters). Keys of a given letter open the door of the same letter: `a` opens `A`, `b` opens `B`, and so on. You aren't sure which key you need to disable the tractor beam, so you'll need to *collect all of them*.
For example, suppose you have the following map:
```
#########
#b.A.@.a#
#########
```
Starting from the entrance (`@`), you can only access a large door (`A`) and a key (`a`). Moving toward the door doesn't help you, but you can move `2` steps to collect the key, unlocking `A` in the process:
```
#########
#b.....@#
#########
```
Then, you can move `6` steps to collect the only other key, `b`:
```
#########
#@......#
#########
```
So, collecting every key took a total of `*8*` steps.
Here is a larger example:
```
########################
#f.D.E.e.C.b.A.@.a.B.c.#
######################.#
#d.....................#
########################
```
The only reasonable move is to take key `a` and unlock door `A`:
```
########################
#f.D.E.e.C.b.....@.B.c.#
######################.#
#d.....................#
########################
```
Then, do the same with key `b`:
```
########################
#f.D.E.e.C.@.........c.#
######################.#
#d.....................#
########################
```
...and the same with key `c`:
```
########################
#f.D.E.e.............@.#
######################.#
#d.....................#
########################
```
Now, you have a choice between keys `d` and `e`. While key `e` is closer, collecting it now would be slower in the long run than collecting key `d` first, so that's the best choice:
```
########################
#f...E.e...............#
######################.#
#@.....................#
########################
```
Finally, collect key `e` to unlock door `E`, then collect key `f`, taking a grand total of `*86*` steps.
Here are a few more examples:
* ```
########################
#...............b.C.D.f#
#.######################
#.....@.a.B.c.d.A.e.F.g#
########################
```
Shortest path is `132` steps: `b`, `a`, `c`, `d`, `f`, `e`, `g`
* ```
#################
#i.G..c...e..H.p#
########.########
#j.A..b...f..D.o#
########@########
#k.E..a...g..B.n#
########.########
#l.F..d...h..C.m#
#################
```
Shortest paths are `136` steps;
one is: `a`, `f`, `b`, `j`, `g`, `n`, `h`, `d`, `l`, `o`, `e`, `p`, `c`, `i`, `k`, `m`
* ```
########################
#@..............ac.GI.b#
###d#e#f################
###A#B#C################
###g#h#i################
########################
```
Shortest paths are `81` steps; one is: `a`, `c`, `f`, `i`, `d`, `g`, `b`, `e`, `h`
*How many steps is the shortest path that collects all of the keys?*
Your puzzle answer was `5182`.
\--- Part Two ---
----------
You arrive at the vault only to discover that there is not one vault, but *four* - each with its own entrance.
On your map, find the area in the middle that looks like this:
```
...
.@.
...
```
Update your map to instead use the correct data:
```
@#@
###
@#@
```
This change will split your map into four separate sections, each with its own entrance:
```
####### #######
#a.#Cd# #a.#Cd#
##...## ##@#@##
##.@.## --> #######
##...## ##@#@##
#cB#Ab# #cB#Ab#
####### #######
```
Because some of the keys are for doors in other vaults, it would take much too long to collect all of the keys by yourself. Instead, you deploy four remote-controlled robots. Each starts at one of the entrances (`@`).
Your goal is still to *collect all of the keys in the fewest steps*, but now, each robot has its own position and can move independently. You can only remotely control a single robot at a time. Collecting a key instantly unlocks any corresponding doors, regardless of the vault in which the key or door is found.
For example, in the map above, the top-left robot first collects key `a`, unlocking door `A` in the bottom-right vault:
```
#######
#@.#Cd#
##.#@##
#######
##@#@##
#cB#.b#
#######
```
Then, the bottom-right robot collects key `b`, unlocking door `B` in the bottom-left vault:
```
#######
#@.#Cd#
##.#@##
#######
##@#.##
#c.#.@#
#######
```
Then, the bottom-left robot collects key `c`:
```
#######
#@.#.d#
##.#@##
#######
##.#.##
#@.#.@#
#######
```
Finally, the top-right robot collects key `d`:
```
#######
#@.#.@#
##.#.##
#######
##.#.##
#@.#.@#
#######
```
In this example, it only took `*8*` steps to collect all of the keys.
Sometimes, multiple robots might have keys available, or a robot might have to wait for multiple keys to be collected:
```
###############
#d.ABC.#.....a#
######@#@######
###############
######@#@######
#b.....#.....c#
###############
```
First, the top-right, bottom-left, and bottom-right robots take turns collecting keys `a`, `b`, and `c`, a total of `6 + 6 + 6 = 18` steps. Then, the top-left robot can access key `d`, spending another `6` steps; collecting all of the keys here takes a minimum of `*24*` steps.
Here's a more complex example:
```
#############
#DcBa.#.GhKl#
#.###@#@#I###
#e#d#####j#k#
###C#@#@###J#
#fEbA.#.FgHi#
#############
```
* Top-left robot collects key `a`.
* Bottom-left robot collects key `b`.
* Top-left robot collects key `c`.
* Bottom-left robot collects key `d`.
* Top-left robot collects key `e`.
* Bottom-left robot collects key `f`.
* Bottom-right robot collects key `g`.
* Top-right robot collects key `h`.
* Bottom-right robot collects key `i`.
* Top-right robot collects key `j`.
* Bottom-right robot collects key `k`.
* Top-right robot collects key `l`.
In the above example, the fewest steps to collect all of the keys is `*32*`.
Here's an example with more choices:
```
#############
#g#f.D#..h#l#
#F###e#E###.#
#dCba@#@BcIJ#
#############
#nK.L@#@G...#
#M###N#H###.#
#o#m..#i#jk.#
#############
```
One solution with the fewest steps is:
* Top-left robot collects key `e`.
* Top-right robot collects key `h`.
* Bottom-right robot collects key `i`.
* Top-left robot collects key `a`.
* Top-left robot collects key `b`.
* Top-right robot collects key `c`.
* Top-left robot collects key `d`.
* Top-left robot collects key `f`.
* Top-left robot collects key `g`.
* Bottom-right robot collects key `k`.
* Bottom-right robot collects key `j`.
* Top-right robot collects key `l`.
* Bottom-left robot collects key `n`.
* Bottom-left robot collects key `m`.
* Bottom-left robot collects key `o`.
This example requires at least `*72*` steps to collect all keys.
After updating your map and using the remote-controlled robots, *what is the fewest steps necessary to collect all of the keys?*
Your puzzle answer was `2154`.
Both parts of this puzzle are complete! They provide two gold stars: \*\*
At this point, you should [return to your Advent calendar](/2019) and try another puzzle.
If you still want to see it, you can [get your puzzle input](18/input).

View file

@ -0,0 +1,241 @@
use core::fmt::Display;
use std::collections::{HashMap, HashSet, VecDeque};
#[derive(Debug, PartialEq, Eq)]
pub enum ParseError {
CharMalformed(char),
}
impl Display for ParseError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::CharMalformed(v) => write!(f, "Unexpected Character: {v}"),
}
}
}
type Coordinates = (usize, usize);
#[derive(PartialEq, Eq, Clone, Copy)]
enum Tile {
Open,
Wall,
Entrance,
Door(usize),
Key(usize),
}
impl Tile {
fn print(self) -> char {
match self {
Self::Open => '.',
Self::Wall => '#',
Self::Entrance => '@',
Self::Door(i) => (b'A' + i.ilog2() as u8) as char,
Self::Key(i) => (b'a' + i.ilog2() as u8) as char,
}
}
}
struct Vault {
tiles: Vec<Vec<Tile>>,
}
impl TryFrom<&str> for Vault {
type Error = ParseError;
fn try_from(value: &str) -> Result<Self, Self::Error> {
let tiles = value.lines()
.map(|line| line.chars()
.map(|c| {
match c {
'.' => Ok(Tile::Open),
'#' => Ok(Tile::Wall),
'@' => Ok(Tile::Entrance),
d if d.is_uppercase() => Ok(Tile::Door(2_usize.pow(d as u32 - b'A' as u32))),
k if k.is_lowercase() => Ok(Tile::Key(2_usize.pow(k as u32 - b'a' as u32))),
_ => Err(ParseError::CharMalformed(c)),
}
}).collect::<Result<Vec<_>, _>>()
).collect::<Result<Vec<_>, _>>()?;
Ok(Self {
tiles,
})
}
}
impl Vault {
fn split(&self, entrance: (usize, usize)) -> Self {
let mut tiles = self.tiles.to_vec();
for dx in 0..3 {
for dy in 0..3 {
tiles[entrance.1+dy-1][entrance.0+dx-1] = if dx % 2 == 0 && dy % 2 == 0 { Tile::Entrance } else { Tile::Wall };
}
}
Self {
tiles,
}
}
fn print(&self) -> String {
self.tiles.iter()
.flat_map(|row| row.iter()
.map(|t| t.print())
.chain(['\n'].into_iter()))
.collect()
}
}
#[derive(PartialEq, Eq, Hash, Clone)]
struct CollectionState {
positions: Vec<Coordinates>,
keys_left: usize,
}
#[derive(PartialEq, Eq, Hash, Clone, Copy)]
struct TraversalState {
position: Coordinates,
keys_required: usize,
}
impl TraversalState {
fn get_neighbours(&self) -> [Self; 4] {
[
Self { position: (self.position.0-1, self.position.1), keys_required: self.keys_required },
Self { position: (self.position.0+1, self.position.1), keys_required: self.keys_required },
Self { position: (self.position.0, self.position.1-1), keys_required: self.keys_required },
Self { position: (self.position.0, self.position.1+1), keys_required: self.keys_required },
]
}
}
pub fn run(input: &str) -> Result<(usize, usize), ParseError> {
let vault = Vault::try_from(input)?;
// println!("{}", vault.print());
let keys: Vec<_> = vault.tiles.iter().enumerate().flat_map(|(y, row)| row.iter().enumerate().filter(|(_x, tile)| matches!(tile, Tile::Key(_))).map(|(x, key)| match key { Tile::Key(k) => (x, y, *k), _ => unreachable!(), }).collect::<Vec<_>>()).collect();
let entrance = vault.tiles.iter().enumerate().find(|(_y, row)| row.iter().any(|tile| matches!(tile, Tile::Entrance))).map(|(y, row)| (row.iter().position(|tile| matches!(tile, Tile::Entrance)).unwrap(), y)).unwrap();
let graph = get_graph(&vault, &keys, &[entrance]);
let first = find_shortest(&graph, &keys, &[entrance]);
let vault_2 = &vault.split(entrance);
// println!("{}", vault_2.print());
let entrances_2 = [(entrance.0-1, entrance.1-1), (entrance.0+1, entrance.1-1), (entrance.0-1, entrance.1+1), (entrance.0+1, entrance.1+1)];
let graph_2 = get_graph(vault_2, &keys, &entrances_2);
// dbg!(&graph_2);
let second = find_shortest(&graph_2, &keys, &entrances_2);
// let second = 0;
Ok((first, second))
}
fn find_shortest(graph: &HashMap<((usize, usize), (usize, usize)), Vec<(usize, usize)>>, keys: &[(usize, usize, usize)], entrances: &[(usize, usize)]) -> usize {
let starting = CollectionState { positions: entrances.to_vec(), keys_left: keys.iter().map(|(_x, _y, k)| k).sum() };
let mut open_set = HashSet::from([starting.clone()]);
let mut costs = HashMap::from([(starting, 0)]);
while !open_set.is_empty() {
let current = open_set.iter().min_by_key(|s| costs.get(s).unwrap()).unwrap().clone();
let old_costs = *costs.get(&current).unwrap();
if current.keys_left == 0 {
return old_costs;
}
open_set.remove(&current);
for (x, y, key) in keys.iter().filter(|(_x, _y, k)| k & current.keys_left > 0) {
for cursor in 0..current.positions.len() {
let mut new = current.clone();
new.positions[cursor] = (*x, *y);
new.keys_left -= *key;
let paths = graph.get(&(current.positions[cursor], new.positions[cursor])).unwrap();
let shortest_path = paths.iter().find(|(_dist, keys_required)| keys_required & current.keys_left == 0).map(|(dist, _keys_required)| *dist).unwrap_or(usize::MAX);
let new_costs = old_costs.saturating_add(shortest_path);
if new_costs < *costs.get(&new).unwrap_or(&usize::MAX) {
open_set.insert(new.clone());
costs.insert(new.clone(), new_costs);
}
}
}
}
panic!("Exhausted all ways but found no solution");
}
fn get_graph(vault: &Vault, keys: &[(usize, usize, usize)], entrances: &[(usize, usize)]) -> HashMap<((usize, usize), (usize, usize)), Vec<(usize, usize)>> {
let mut res = HashMap::new();
for dest in keys {
let dest = (dest.0, dest.1);
for starting in entrances {
res.insert((*starting, dest), get_paths(*starting, dest, vault));
}
for start in keys {
let start = (start.0, start.1);
let paths = if let Some(rev) = res.get(&(dest, start)) {
rev.to_vec()
} else {
get_paths(start, dest, vault)
};
res.insert((start, dest), paths);
}
}
res
}
fn get_paths(start: Coordinates, dest: Coordinates, vault: &Vault) -> Vec<(usize, usize)> {
let mut open_set = VecDeque::from([TraversalState { position: start, keys_required: 0 }]);
let mut distances = HashMap::from([(TraversalState { position: start, keys_required: 0 }, 0)]);
let mut res = Vec::new();
while let Some(current) = open_set.pop_front() {
let dist = *distances.get(&current).unwrap();
if distances.iter().any(|(other, d)| other.position == current.position && d <= &dist && other.keys_required | current.keys_required == current.keys_required && other.keys_required < current.keys_required) {
continue;
}
if res.iter().any(|(d, keys)| d <= &dist && current.keys_required | keys == current.keys_required) {
continue;
}
if current.position == dest {
res.push((dist, current.keys_required));
if current.keys_required == 0 {
res.sort_by_key(|(dist, _keys_required)| *dist);
return res;
}
} else {
for neighbour in current.get_neighbours().iter_mut() {
match vault.tiles[neighbour.position.1][neighbour.position.0] {
Tile::Wall => continue,
Tile::Door(i) => neighbour.keys_required |= i,
// Tile::Key(_) if neighbour.position != dest => continue,
_ => ()
}
let new_dist = dist + 1;
if distances.get(neighbour).unwrap_or(&usize::MAX) > &new_dist {
open_set.push_back(*neighbour);
distances.insert(*neighbour, new_dist);
}
}
}
}
res
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs::read_to_string;
fn read_file(name: &str) -> String {
read_to_string(name).expect(&format!("Unable to read file: {name}")[..]).trim().to_string()
}
#[test]
// #[ignore]
fn test_sample() {
let sample_input = read_file("tests/sample_input");
assert_eq!(run(&sample_input), Ok((128, 82)));
// assert_eq!(run(&sample_input), Ok((114, 72)));
}
#[test]
#[ignore]
fn test_challenge() {
let challenge_input = read_file("tests/challenge_input");
assert_eq!(run(&challenge_input), Ok((5182, 2154)));
}
}

View file

@ -0,0 +1,81 @@
#################################################################################
#.............#..o..........#...........#...............#b......#...#.........#.#
#.#######.#.#.#.#.#########.###.#######.###.#########.###.###.###.#.#C#####.#.#.#
#.#...A.#.#.#.#.#.#w....#.#...#..e#.....#...#.....#...#...#...#...#.#.....#.#k..#
#.#.###.###.#.###.###.#.#.###.#####.###.#.###.#####.###.###.###.###.#####.#.###.#
#.#...#.....#...#.#...#.....#.....#...#.#...#.#...#.#...#.#.....#.#.....#.#.#...#
#.###.#########.#.#.#######.#####.###.#.###.#.#.#.#.#.###.#######.###.#.#.#.#####
#...#.#...........#.......#.....#.....#.#...#...#.#.#.......#.....#...#.#.#.#...#
###.#.###.#############.#.#############.#.###.###.#P#######.###.#.#.###.#.#.#.#.#
#...#...#.#.....#.....#.#.....#...#.....#.#.....#.......#...#...#.#.#...#.#...#.#
#.#####.#.#.###.#.###.#######.#.#.#.#####.###############.###.#####.#.###.#####.#
#.....#.#.#.#.#.#...#.#.....#.#.#.#.....#.......#.......#.#.......#.#...#.#...#.#
###.###.#.#.#.#.###.#.#.###.#.#.#.#####.#.#####.#.#####.#.#######.#.###.#.#.###.#
#...#...#.#...#.#...#.#.#...#...#.....#.#.#.#...#.#.#...#...#.....#.#...#.#.#...#
#.###.#######.#.#.###.#.###.#.#####.###.#.#.#.#.#.#.#.#####.#.###.#D###.#.#.#.###
#...#.....#...#.....#.#...#.#.#...#.#...#...#.#.#...#.....#.#.#.X.#...#.#...#...#
###.#####.#.#####.###.###.#.###.#.#.#.#######.#.###.#####.#.#.###.###.#####.###.#
#.#.....#...#...#.#...#.#.#.#...#.#.#...#.....#.#.#.#...#.#.#...#...#...#...#...#
#.#####.#####.#.###.#.#.#.#.#.###.#.###.#.#####.#.#.#.#.#.#.###.#.#####.#.###.###
#.#...#.#.....#.....#...#.#...#...#.....#.#.....#.#.#.#.#.......#.#...#.....#...#
#.#.#.#.#.###.#########.#.#####.#######.#.#.#####.#.###.#########.#.#.#########.#
#...#...#...#.#...#...#.#.#...#.......#.#.#.....#.#.#.....#...#...#.#.........#i#
#.#####.###.#.#.#.#.#####.#.#########.#.#.#####.#.#.#.#####.#######.#########.#.#
#.#...#...#.#.#.#...#.....#.........#.#.#.....#...#...#n..#..f..#.Z.#...W...#.#.#
#K#Y#.#.###.#.#.#####.#####.###.#####.#.#####.#####.###.#.#####.#.###.#.#####.#.#
#.#.#.#.#...#.#.#.#...#...#.#.#.#...#.#.#.....#.....#...#.......#.#.#.#......h#.#
#.#.#.###.#.###.#.#.#.###.#.#.#.#.#.#.#.#.#J###.#####.###########.#.#.#########.#
#.#.#.....#.#...#...#...#...#.#.#.#...#.#.#.#...#...#.....#...#g..#.#.#...#.....#
###.#######.#.###.#####.#.###.#.#.#######.###.#####.#####.#.#.#.###.#.#.###.###.#
#...#.....#.#.#...#.....#.....#.#.......#...#.#.......#.#...#...#.....#.....#...#
#.#####.###.#.#.###.#########.#.#######.#.#.#.###.###.#.#########.#####.#####.###
#.....#.....#d#...#.#...#...#.#.......#.#.#.#...#...#.#.......#.#.#...#...#.#...#
#.###.#.#####.###.#.#.#.#.#.#.###.#####.###.###.###.#.###.###.#.#.###.###.#.###.#
#.#...#...#.#.#...#.#.#.#.#...#.#.....#.#...#.#.....#...#.#.#...#...#.....#.#...#
#.#.#####.#.#.#####.#.#.#.#####.#####.#.#.#.#.#########.#.#.###.###.#####.#.#.###
#.#.....#.#.#...#...#.#.#...#.......#.#.#.#.......#...#...#...#...#.....#.#.#...#
#.#####V#.#.###.#.###.#.###.#.#####.#.#.#.#######.#.#.#####.#.###.#####.#.#U###.#
#.....#.#.....#...#...#...#.#.....#.#...#...#.....#.#.......#.#...#..v#.#.....#.#
#####.#.###########.#######.#####.#.#####.#.#######.#####.#####.#####.#.#######.#
#.....#...........................#.......#.............#.........R...#l........#
#######################################.@.#######################################
#.............#......r..#.......#...........#.........#...#.......#.....#.#.....#
#.###########.#######.###.#.###.#.#####.#.###.#######.#.#.#.###.###.#.#.#.#.#.###
#...#.......#.......#.....#.#.#...#...#.#.#...#.....#...#.#...#.....#y#...#.#...#
###.#.###.#.#######.#.#####.#.#######.#.#.#.###.###.#####.###.#######.###.#.###Q#
#...#.#...#.#.......#.#.....#.......#.#.#...#...#...#...#...#...#...#...#.#.#.#.#
#.###.#.#.###.#######.#.#######.###.#.#.#.###.#####.#.#.###.###.#.#.###.#.#.#.#.#
#.#...#.#.#.........#.#...#.....#.....#.#.#...#...#...#.#.#.....#.#.#...#.#...#.#
#.#.###.###.#######.#####.#.#.#########.#.###.#.#.#####.#.#######.#.#.#######.#.#
#q#...#.....#.....#.....#.#.#.#...#.....#...#...#.#...#.........#.#.#.#.......#.#
#.#######.###.###.#####.#.#.###.#.#.#######.#.###.#.#.#########.#.#.#.#.#######.#
#.#.....#...#.#.#.#...#.#.#.#...#.#.....#..j#.#...#.#.....#.....#.#.#.....#.....#
#.#.###.#####.#.#.###.#.#.#.#.###.#####.#.###.#.###.#####.###.###.#.#######.###.#
#.#.#.#...#...#.#.#...#...#.#...#.......#.#.#.#.....#...#...#...#.#.......#...#.#
#.#L#.###.#.###.#.#.#######.###.#########.#.#.#########.###.###.#.#######.###S#.#
#.#...#.#.#.#...#.#.#...#.......#...#...#.#.............#.#.#.#.#.#.....#...#.#.#
#.###.#.#.#.###.#.#.#.#.#.#######.#.#.#.#.#.###########.#.#.#.#.#.###.#.###.#.#.#
#...#...#...#...#.#.#.#.........#.#.#.#.#.#.#.......#.#.#.#.#...#...#.#...#.#.#.#
#.#.###.#####.#.#H#.#.#########.#.#.#N#.#.#.#.#####.#.#.#.#.#######.###.#.#.#.#.#
#.#.#...#.....#.#.#.....#...#...#.#...#.#.#.#.#...#.#.....#.#.....#...#.#.#...#.#
###.#.###.#.#####.#.#####.#.#.###.#####.#.###.#.#.#.#.#####.#.###.###.#.#######.#
#...#...#.#...#...#.#.T...#.#.#.F.#.#...#.....#.#.#.#...#...#.#...#...#...#...#.#
#.#####.#.###.#.###########.###.###.#.#########.#.#.###.#.#.###.###.###.#.#.#.#.#
#.....#.#.#u..#..z........#....t#.G...#.#.......#.#.#...#.#...#.#...#...#...#...#
###.#.#.###.###########.#########.#####.#.#####.#.#.#####.#.###.#.#######.#######
#...#s#...#.....#.....#.........#.#.....#.....#.#.#.....#.#.#...#.......#...#...#
#.###.###.###.#.#.###.#######.###.#.###########.#######.#.#.#.###.#####.#####.#.#
#.#.....#...#.#.....#.......#.....#.....#.....#.......#.#.#.#...#.#...#...#...#.#
#.#########.###############.###########.#.###.#####.###.#.#####.#.#.#####.#.###.#
#.#x......#.#...#...........#...........#.#.........#...#.#.....#...#.....#.#...#
#.#.#####.#I#.#.#.#########.#####.#####.#.###########.###.#.#######.#.#####.#.###
#.#...#...#...#...#.....#.#.#...#...#...#.............#...#.....#.#.#.......#.O.#
#.###.#.#############.#.#.#.#.#.###.#.###.###############.#####.#.#.#######.###.#
#...#.#.....#...#.....#...#.#.#.....#.#.#.#...#...#.....#..m#...#...#.....#.#...#
#.###.###.#.#.#.###.#######.#.#######.#.#.#.#.#.#.#.###.###.#.#######.###.#.#.###
#.#...#.#.#...#.....#.....#...#.....#...#.#.#...#.#...#.#...#.....#...#...#.#...#
#.#M###.#.###########.###.#####.###.###.#.#.#####.###.#.#.#######.#.###.#######.#
#.#...#.#...#..a..#...#.#.....#.#.....#.#p..#...#...#.#.#.#.......#.#...#.....#.#
#.###.#.###.#.###.#.###.###.###.#.#####.#####.#####.#.#.#.#.#######.#.###.###.#.#
#.........#...B.#.........#.....#.......#.............#...#.......E.#.....#....c#
#################################################################################

View file

@ -0,0 +1,9 @@
#################
#i.G..c.#.e..H.p#
#######.#.#######
#j.A..b...f..D.o#
#######.@.#######
#k.E..a...g..B.n#
#######.#.#######
#l.F..d.#.h..C.m#
#################

View file

@ -0,0 +1,9 @@
#############
#g#f.D#..h#l#
#F###e#E###.#
#dCba...BcIJ#
#####.@.#####
#nK.L...G...#
#M###N#H###.#
#o#m..#i#jk.#
#############