Added Solution for 2019 day 24

This commit is contained in:
Burnus 2023-04-02 10:42:39 +02:00
parent dc03fbee9c
commit 13b662060f
5 changed files with 609 additions and 0 deletions

View file

@ -0,0 +1,8 @@
[package]
name = "day24_planet_of_discord"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View file

@ -0,0 +1,254 @@
You land on [Eris](https://en.wikipedia.org/wiki/Eris_(dwarf_planet)), your last stop before reaching Santa. As soon as you do, your sensors start picking up strange life forms moving around: Eris is infested with [bugs](https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/)! With an over 24-hour roundtrip for messages between you and Earth, you'll have to deal with this problem on your own.
Eris isn't a very large place; a scan of the entire area fits into a 5x5 grid (your puzzle input). The scan shows *bugs* (`#`) and *empty spaces* (`.`).
Each *minute*, The bugs live and die based on the number of bugs in the *four adjacent tiles*:
* A bug *dies* (becoming an empty space) unless there is *exactly one* bug adjacent to it.
* An empty space *becomes infested* with a bug if *exactly one or two* bugs are adjacent to it.
Otherwise, a bug or empty space remains the same. (Tiles on the edges of the grid have fewer than four adjacent tiles; the missing tiles count as empty space.) This process happens in every location *simultaneously*; that is, within the same minute, the number of adjacent bugs is counted for every tile first, and then the tiles are updated.
Here are the first few minutes of an example scenario:
```
Initial state:
....#
#..#.
#..##
..#..
#....
After 1 minute:
#..#.
####.
###.#
##.##
.##..
After 2 minutes:
#####
....#
....#
...#.
#.###
After 3 minutes:
#....
####.
...##
#.##.
.##.#
After 4 minutes:
####.
....#
##..#
.....
##...
```
To understand the nature of the bugs, watch for the first time a layout of bugs and empty spaces *matches any previous layout*. In the example above, the first layout to appear twice is:
```
.....
.....
.....
#....
.#...
```
To calculate the *biodiversity rating* for this layout, consider each tile left-to-right in the top row, then left-to-right in the second row, and so on. Each of these tiles is worth biodiversity points equal to *increasing powers of two*: 1, 2, 4, 8, 16, 32, and so on. Add up the biodiversity points for tiles with bugs; in this example, the 16th tile (`32768` points) and 22nd tile (`2097152` points) have bugs, a total biodiversity rating of `*2129920*`.
*What is the biodiversity rating for the first layout that appears twice?*
Your puzzle answer was `28781019`.
\--- Part Two ---
----------
After careful analysis, one thing is certain: *you have no idea where all these bugs are coming from*.
Then, you remember: Eris is an old [Plutonian](20) settlement! Clearly, the bugs are coming from recursively-folded space.
This 5x5 grid is *only one* level in an *infinite* number of recursion levels. The tile in the middle of the grid is actually another 5x5 grid, the grid in your scan is contained as the middle tile of a larger 5x5 grid, and so on. Two levels of grids look like this:
```
| | | |
| | | |
| | | |
-----+-----+---------+-----+-----
| | | |
| | | |
| | | |
-----+-----+---------+-----+-----
| | | | | | | |
| |-+-+-+-+-| |
| | | | | | | |
| |-+-+-+-+-| |
| | | |?| | | |
| |-+-+-+-+-| |
| | | | | | | |
| |-+-+-+-+-| |
| | | | | | | |
-----+-----+---------+-----+-----
| | | |
| | | |
| | | |
-----+-----+---------+-----+-----
| | | |
| | | |
| | | |
```
(To save space, some of the tiles are not drawn to scale.) Remember, this is only a small part of the infinitely recursive grid; there is a 5x5 grid that contains this diagram, and a 5x5 grid that contains that one, and so on. Also, the `?` in the diagram contains another 5x5 grid, which itself contains another 5x5 grid, and so on.
The scan you took (your puzzle input) shows where the bugs are *on a single level* of this structure. The middle tile of your scan is empty to accommodate the recursive grids within it. Initially, no other levels contain bugs.
Tiles still count as *adjacent* if they are directly *up, down, left, or right* of a given tile. Some tiles have adjacent tiles at a recursion level above or below its own level. For example:
```
| | | |
1 | 2 | 3 | 4 | 5
| | | |
-----+-----+---------+-----+-----
| | | |
6 | 7 | 8 | 9 | 10
| | | |
-----+-----+---------+-----+-----
| |A|B|C|D|E| |
| |-+-+-+-+-| |
| |F|G|H|I|J| |
| |-+-+-+-+-| |
11 | 12 |K|L|?|N|O| 14 | 15
| |-+-+-+-+-| |
| |P|Q|R|S|T| |
| |-+-+-+-+-| |
| |U|V|W|X|Y| |
-----+-----+---------+-----+-----
| | | |
16 | 17 | 18 | 19 | 20
| | | |
-----+-----+---------+-----+-----
| | | |
21 | 22 | 23 | 24 | 25
| | | |
```
* Tile 19 has four adjacent tiles: 14, 18, 20, and 24.
* Tile G has four adjacent tiles: B, F, H, and L.
* Tile D has four adjacent tiles: 8, C, E, and I.
* Tile E has four adjacent tiles: 8, D, 14, and J.
* Tile 14 has *eight* adjacent tiles: 9, E, J, O, T, Y, 15, and 19.
* Tile N has *eight* adjacent tiles: I, O, S, and five tiles within the sub-grid marked `?`.
The rules about bugs living and dying are the same as before.
For example, consider the same initial state as above:
```
....#
#..#.
#.?##
..#..
#....
```
The center tile is drawn as `?` to indicate the next recursive grid. Call this level 0; the grid within this one is level 1, and the grid that contains this one is level -1. Then, after *ten* minutes, the grid at each level would look like this:
```
Depth -5:
..#..
.#.#.
..?.#
.#.#.
..#..
Depth -4:
...#.
...##
..?..
...##
...#.
Depth -3:
#.#..
.#...
..?..
.#...
#.#..
Depth -2:
.#.##
....#
..?.#
...##
.###.
Depth -1:
#..##
...##
..?..
...#.
.####
Depth 0:
.#...
.#.##
.#?..
.....
.....
Depth 1:
.##..
#..##
..?.#
##.##
#####
Depth 2:
###..
##.#.
#.?..
.#.##
#.#..
Depth 3:
..###
.....
#.?..
#....
#...#
Depth 4:
.###.
#..#.
#.?..
##.#.
.....
Depth 5:
####.
#..#.
#.?#.
####.
.....
```
In this example, after 10 minutes, a total of `*99*` bugs are present.
Starting with your scan, *how many bugs are present after 200 minutes?*
Your puzzle answer was `1939`.
Both parts of this puzzle are complete! They provide two gold stars: \*\*
At this point, you should [return to your Advent calendar](/2019) and try another puzzle.
If you still want to see it, you can [get your puzzle input](24/input).

View file

@ -0,0 +1,337 @@
use core::fmt::Display;
use std::collections::HashSet;
#[derive(Debug, PartialEq, Eq)]
pub enum ParseError {
LineMalformed(String),
}
impl Display for ParseError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::LineMalformed(v) => write!(f, "Line is malformed: {v}"),
}
}
}
#[derive(PartialEq, Clone, Copy)]
enum BugState {
Bug,
Empty,
}
impl BugState {
fn other(&self) -> Self {
match self {
Self::Bug => Self::Empty,
Self::Empty => Self::Bug,
}
}
}
#[derive(Clone, Copy)]
struct Grid {
bugs: [[BugState; 5]; 5],
}
impl TryFrom<&str> for Grid {
type Error = ParseError;
fn try_from(value: &str) -> Result<Self, Self::Error> {
let mut bugs = [[BugState::Empty; 5]; 5];
for (y, row) in value.lines().enumerate() {
for (x, c) in row.chars().enumerate() {
match c {
'.' => (),
'#' => bugs[y][x] = BugState::Bug,
_ => return Err(ParseError::LineMalformed(format!("Unexpected token: {c}"))),
}
}
}
Ok(Self { bugs })
}
}
impl Grid {
fn empty() -> Self {
Self { bugs: [[BugState::Empty; 5]; 5] }
}
fn bugs_adjacent_to(&self, (x, y): (usize, usize)) -> usize {
[(1, 0), (0, 1), (2, 1), (1, 2)].iter().filter(|(dx, dy)| (1..=5).contains(&(x+dx)) && (1..=5).contains(&(y+dy)) && self.bugs[y+dy-1][x+dx-1] == BugState::Bug).count()
}
fn next_minute(&mut self) {
let mut next = self.bugs;
for y in 0..5 {
for x in 0..5 {
next[y][x] = match self.bugs_adjacent_to((x, y)) {
1 => BugState::Bug,
2 => self.bugs[y][x].other(),
_ => BugState::Empty,
}
}
}
std::mem::swap(&mut next, &mut self.bugs);
}
fn biodiversity_rating(&self) -> usize {
self.bugs.iter().enumerate().map(|(y, row)| row.iter().enumerate().map(|(x, state)| if state == &BugState::Bug { 2_usize.pow(5*y as u32 + x as u32) } else { 0 }).sum::<usize>()).sum()
}
fn print(&self) -> String {
self.bugs.iter().map(|row| row.iter().map(|state| if state == &BugState::Bug { '#' } else { '.' }).chain(['\n'].into_iter()).collect::<String>()).collect()
}
}
struct Grid3D {
grids: [Grid; 401],
}
impl TryFrom<&str> for Grid3D {
type Error = ParseError;
fn try_from(value: &str) -> Result<Self, Self::Error> {
let mut grids = [Grid::empty(); 401];
grids[200] = Grid::try_from(value)?;
Ok(Self { grids, })
}
}
impl Grid3D {
fn bugs_adjacent_to(&self, (x, y, z): (usize, usize, usize)) -> usize {
match (x, y, z) {
(2, 2, _) => 0,
(0, 0, 0) => [(0, 1, 0), (1, 0, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(0, 0, z) => [(0, 1, z), (1, 0, z), (2, 1, z-1), (1, 2, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(0, 4, 0) => [(0, 3, 0), (1, 4, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(0, 4, z) => [(0, 3, z), (1, 4, z), (1, 2, z-1), (2, 3, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(0, y, 0) => [(0, y-1, 0), (1, y, 0), (0, y+1, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(0, y, z) => [(0, y-1, z), (1, y, z), (0, y+1, z), (1, 2, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(4, 0, 0) => [(3, 0, 0), (4, 1, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(4, 0, z) => [(3, 0, z), (4, 1, z), (2, 1, z-1), (3, 2, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(4, 4, 0) => [(4, 3, 0), (3, 4, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(4, 4, z) => [(4, 3, z), (3, 4, z), (2, 3, z-1), (3, 2, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(4, y, 0) => [(4, y-1, 0), (3, y, 0), (4, y+1, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(4, y, z) => [(4, y-1, z), (3, y, z), (4, y+1, z), (3, 2, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(x, 0, 0) => [(x-1, 0, 0), (x, 1, 0), (x+1, 0, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(x, 0, z) => [(x-1, 0, z), (x, 1, z), (x+1, 0, z), (2, 1, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(x, 4, 0) => [(x-1, 4, 0), (x, 3, 0), (x+1, 4, 0)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(x, 4, z) => [(x-1, 4, z), (x, 3, z), (x+1, 4, z), (2, 3, z-1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(1, 2, 400) => [(1, 1, 400), (0, 2, 400), (1, 3, 400)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(2, 1, 400) => [(1, 1, 400), (2, 0, 400), (3, 1, 400)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(2, 3, 400) => [(1, 3, 400), (2, 4, 400), (3, 3, 400)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(3, 2, 400) => [(3, 1, 400), (4, 2, 400), (3, 3, 400)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(1, 2, z) => [(1, 1, z), (0, 2, z), (1, 3, z), (0, 0, z+1), (0, 1, z+1), (0, 2, z+1), (0, 3, z+1), (0, 4, z+1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(2, 1, z) => [(1, 1, z), (2, 0, z), (3, 1, z), (0, 0, z+1), (1, 0, z+1), (2, 0, z+1), (3, 0, z+1), (4, 0, z+1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(2, 3, z) => [(1, 3, z), (2, 4, z), (3, 3, z), (0, 4, z+1), (1, 4, z+1), (2, 4, z+1), (3, 4, z+1), (4, 4, z+1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(3, 2, z) => [(3, 1, z), (4, 2, z), (3, 3, z), (4, 0, z+1), (4, 1, z+1), (4, 2, z+1), (4, 3, z+1), (4, 4, z+1)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
(x, y, z) => [(x-1, y, z), (x, y-1, z), (x+1, y, z), (x, y+1, z)].iter().filter(|(x, y, z)| self.grids[*z].bugs[*y][*x] == BugState::Bug).count(),
}
}
fn next_minute(&mut self) {
let mut next = self.grids;
for z in 0..401 {
for y in 0..5 {
for x in 0..5 {
next[z].bugs[y][x] = match self.bugs_adjacent_to((x, y, z)) {
1 => BugState::Bug,
2 => self.grids[z].bugs[y][x].other(),
_ => BugState::Empty,
}
}
}
}
std::mem::swap(&mut next, &mut self.grids);
}
}
pub fn run_1(input: &str) -> Result<usize, ParseError> {
let mut grid = Grid::try_from(input)?;
let mut previous = HashSet::from([grid.biodiversity_rating()]);
loop {
grid.next_minute();
let this = grid.biodiversity_rating();
if previous.contains(&this) {
return Ok(this);
}
previous.insert(this);
}
}
pub fn run_2(input: &str, turns: usize) -> Result<usize, ParseError> {
let mut grid = Grid3D::try_from(input)?;
for _ in 0..turns {
grid.next_minute();
}
// for level in 195..=205 {
// println!("{}", grid.grids[level].print());
// }
Ok(grid.grids.iter().map(|level| level.bugs.iter().map(|row| row.iter().filter(|state| state == &&BugState::Bug).count()).sum::<usize>()).sum())
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs::read_to_string;
fn read_file(name: &str) -> String {
read_to_string(name).expect(&format!("Unable to read file: {name}")[..]).trim().to_string()
}
#[test]
fn biodiversity_rating_sample() {
let mut grid = Grid{ bugs: [[BugState::Empty; 5]; 5], };
grid.bugs[3][0] = BugState::Bug;
grid.bugs[4][1] = BugState::Bug;
assert_eq!(grid.biodiversity_rating(), 2129920);
}
#[test]
fn test_sample() {
let sample_input = read_file("tests/sample_input");
let mut grid = Grid::try_from(&sample_input[..]).unwrap();
let expected_states = [
"....#
#..#.
#..##
..#..
#....
",
"#..#.
####.
###.#
##.##
.##..
",
"#####
....#
....#
...#.
#.###
",
"#....
####.
...##
#.##.
.##.#
",
"####.
....#
##..#
.....
##...
",
];
for expected in expected_states {
let actual = grid.print();
assert_eq!(&actual[..], expected);
grid.next_minute();
}
assert_eq!(run_2(&sample_input, 10), Ok(99))
// assert_eq!(run(&sample_input), Ok((0, 0)));
}
#[test]
fn test_recursive_next() {
let initial =
"....#
#..#.
#..##
..#..
#....";
let mut grid = Grid3D::try_from(initial).unwrap();
let expected_1 = [
".....
..#..
...#.
..#..
.....
",
"#..#.
####.
##..#
##.##
.##..
",
"....#
....#
....#
....#
#####
",
];
let expected_2 = [
"..#..
.#.#.
....#
.#.#.
..#..
",
".....
.....
.....
...#.
.....
",
"####.
#..#.
#..#.
####.
.....
",
];
let expected_3 = [
".....
..#..
...#.
..#..
.....
",
".#.#.
#...#
.#...
#...#
.#.#.
",
".....
.....
...#.
..#.#
...#.
",
"....#
.##.#
.#..#
....#
####.
",
];
grid.next_minute();
for (level, bugs) in expected_1.iter().enumerate() {
assert_eq!(grid.grids[199+level].print(), bugs.to_string());
}
grid.next_minute();
for (level, bugs) in expected_2.iter().enumerate() {
assert_eq!(grid.grids[199+level].print(), bugs.to_string());
}
grid.next_minute();
for (level, bugs) in expected_3.iter().enumerate() {
assert_eq!(grid.grids[198+level].print(), bugs.to_string());
}
}
#[test]
fn test_challenge() {
let challenge_input = read_file("tests/challenge_input");
assert_eq!(run_1(&challenge_input), Ok(28781019));
assert_eq!(run_2(&challenge_input, 200), Ok(1939));
}
}

View file

@ -0,0 +1,5 @@
##.#.
.##..
##.#.
.####
###..

View file

@ -0,0 +1,5 @@
....#
#..#.
#..##
..#..
#....